MITOCW | watch?v=kKyrROcFrEg

ANNOUNCER:

PROFESSOR:

PROF. RON
WEISS:

PROFESSOR:

PROF. RON
WEISS:

The following content is provided under a Creative Commons license. Your support
will help MIT OpenCourseWare continue to offer high quality educational resources
for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

OK. Welcome back to computational systems biology We have the honor today of
having Professor Ron Weiss visit us. As | told you on Tuesday, he's going to talk

about synthetic biology.

And Ron is probably from both the department of biological engineering and the
Computer Science department and also a founding member of the Synthetic Biology

Center at MIT. And now, thank you, Ron.

Thank you, Dave. Thanks for inviting me here. Did you mention our background?
Dave was actually-- advised me when | first came to our graduate school at MIT.

And at the time, | was working on digital video and information retrieval.

And Dave started getting into the business of biology. This is back in the early '90s.
And | was like, this is cool stuff but it's really messy. How can you engineer with

these molecules?

And we've got the answer to that.

Yeah. So we'll see. So let's see if the answer is-- it does actually work.

So yeah, so I-- after being a non-believer-- | don't know if non-believer, but just-- |
didn't feel | quite had the engineering capabilities. Towards around '96 or so is when
| decided to actually make the switch. At the time, | was working-- around '96, | was
working at this notion of how can we use what we know in biology to understand
how we program computers and especially situations where you have lots and lots

of computing elements like-- things like smartDOS.

| don't know if people have heard, but amorphous computing. So back in the mid

'90s or so, this notion that we would be able to embed computation everywhere was
kind of an exciting notion. And | thought to myself, where-- how could | get inspired?

And | thought, well, biology obviously could serve as great inspiration.

Because that's a situation where you have millions or billions of little computing
elements that don't have too much power, kind of interact locally. But they still
perform very robust operations. And so | performed a variety of simulations, for
example, of embryogenesis and other processes to try to understand what happens
in biology and can | again use that to program computers or little tiny computers.
And | remember one day, | just decided to flip the arrow and basically rather than
trying to use biology to understand or program computers, | decided, let me use

what | know in computing to actually try to program biology, OK?

And so now that field is basically called synthetic biology. So I've been in that field--
it's hard to count now, but | guess maybe 18 years or so. And it's been fun and has

not been easy.

But I think at least we're starting to make some-- we're making some progress. So
I'll try to tell you about some of our efforts there. And | certainly encourage you to

ask me questions. So please interrupt me at any point in time.

Any kind of question is fair game. Dave promised me that you guys are a tough

crowd. So let's see. And you can always stump. Let's try to have that happen.

So when | look at this, | get excited as an engineer, OK? And | think to myself, wow.
This could be really cool to be able to program something like this, again, in the
same way that we may program computers. And so this notion of genetic
engineering in a direct way, in a way where we can create new DNA, certainly has

been around since the '70s or so.

And so this notion has allowed us as a community to create various mechanisms
that control what the cells do. So for example, transcriptional regulation,
translational-- so being able to regulate things in a cell, be able to create genetically

encoded sensors, cell-cell communication mechanisms, synthesis of various

interesting molecules-- biofuels, pharmaceuticals, and control physical aspects. And
so those capabilities have been around before synthetic biology. But if you were to
ask me what is different about synthetic biology, | would say it's really the emphasis
on systems level engineering. OK, so this notion that we are not just trying to
engineer over expression of this gene or that gene or a couple of genes, but really

trying to understand how to create systems of interactions.

So in the same way that systems biology has come to the forefront with this notion
that you can't understand a cell by understanding what is the exact purpose of this
particular gene-- we always have to think about it within the context of a pathway
within the context of the entire organism-- in the same way, when we want to be
able to get cells to do interesting things, we have to think about the system as a
whole. And to get the sophistication that we need, we need to understand how to
connect these various elements, regulatory elements, all these kinds of elements, in
reliable, predictable ways, efficient ways and so on to be able to get the cells to be
as programmable as computers. So that if you were to ask me what synthetic

biology is, that would be my answer.

And so now you know it and you can tell all your friends that it's a completely
defined notion and so on. Maybe if yo ask other people, they'll give you slightly

different answers. But there you go.

So how do we develop an engineering discipline out of that? OK, so that's really
how can we get undergrads to come in and take Synbio 101 where it's really a well
defined mechanism and set of methodologies and practices that allow us to do this
reliably. OK, and so we often try to get inspired by how other disciplines approach

the engineering of complex systems.

And so kind of an obvious one would be of computing or robotics where there's this
notion of, for example, bottom up assembly. And so you start with basic devices and
think about how to create modules that have specific behaviors in them and then
put those modules and integrate those modules to create these autonomous

entities such as robots. And we often think about how to create communities of

interactions, communities of robots in this case, and so on.

And so that's worked quite well in a variety of different other engineering disciplines.
And so we often ask the question, can we import these mechanisms into the world
of biology? So can we take basic mechanisms of regulation-- it could be
transcriptional, it could be other modes of regulation-- and then wind these things
up to create customizable pathways that we then embed into cells? And then we
can create programmable communities of bacteria. We can create programmable

tissues of mammalian cells and so on.

And so the question is, is this a useful and efficient way to approach things? So for
example, how are these different approaches similar? What can we borrow from

here that make sense to push on over there?

And | will say when | started working in synthetic biology, most of my efforts were
really focused on adapting and implementing these things-- so adapting them from
other disciplines and trying to understand how to implement them into the world the
biology. But as time has gone by and as we've started to understand and appreciate
the cell more and more, we are also quite interested in how these things are
different as well. So what makes engineering biological systems a truly unique, new
engineering discipline? What would you do in the world of biology that might be
different than what you would do with computers or robots or building bridges and

cars and planes and so on?

And so that that's become more and more of an important focus in my lab and |
think in the community as a whole although not yet everywhere. And you often see
situations where people come in from other disciplines and just think, oh, we'll just
program it, engineer it, just like we do in computing and so on. And it doesn't just

work like that.

So when we approach these tasks of programming the cells, we usually divide
things up into modules of sensors, processing, and actuation. So for example, we
would want to develop sensors that can detect in live cells levels of microRNA

messenger and then proteins and then connect them to synthetic regulatory circuits
4

that we embed in the cells, OK? So it's important that these sensors not just, for
example, give us fluorescent readouts, but it's important that these sensors then
connect to the regulatory networks that we have in mind and so that these
regulatory networks can then integrate multiple pieces of information and make

decisions about actuation.

So how do we turn on specific proteins that will then influence that particular cell or
even the environment in a programmable fashion as dictated by the levels of
particular sensors as well as by other mechanisms or, for example, from looking at
historical information that the cell itself has processed as well? And so this is, |
would say, represents the paradigm for most of the things that do take place in

synthetic biology. And so why do we want to do this?

It's not the program the next version of the iOS or iPhone or something like that.
even though that initially that was one of the things that was discussed, it's not just
for the sake of computation, but really for the sake of specific applications. So for
example, if we have really slow logic gates that work on the order of hours or even
days, that might be fine if the application, for example, is a tissue engineering

application, OK?

And so in synthetic biology, initial emphasis is really been on what can we do with
microbial, let's say, communities or individuals, for example, for synthesis of high
value compounds? | mentioned bioenergy, environmental applications as well. So

that, | would say, was most of the emphasis there.

But over the last few years, there's been a growing interest in health-related
applications. And so my lab in particular looks at mostly health related applications.
And so I'll give you examples of those today, OK? And those include things involved

with cancer, diabetes, in tissues by design.

And in order to do this, in order to have this programmability, you want to think
about scales. So you want to think about how much DNA does it take to do X? And
to a large extent, that controls the sophistication. It really is an important defining

element what we do is the scale of the DNA that we can actually engineer reliably

quickly, efficiently, predictably, in high throughput fashion, and in inexpensive ways.

So we would start with things on the order of genes where | would say that that's
really the basic elements. | would say that a single gene that you overexposes or a
few genes than you inducibly express, | wouldn't count that as synthetic biology. But
when it gets kind of interesting for synthetic biology is when we have this circuitry,
where we now embed interactions that didn't previously exist in that particular cell

context.

And so most of synthetic biology has been really at this level right here-- actually,
mostly from here to here in terms of the scale of the DNA and now trying to go
beyond that-- more along the lines can we create something that's 20,000 bases,
50,000 bases of DNA? OK, is this something that a graduate student can come into
the lab and say, | want to design something that will take 20,000 to 50,000 bases?

Is this a reasonable thing to consider?

OK, and then the question would be, what kind of power does that provide to you?
What things can you do with that? Beyond that, people have explored this notion of

minimal life and even full genome rewrites.

| would say at this point, this is-- what some people clump that in with synthetic
biology, which is fine. We don't have, at the moment, really good ways of being able
to engineer minimal life from scratch or even in a really fundamentally different way.
So most of the efforts on minimal life would be take an organism and try to figure
out what to knock out, right, as opposed to saying, I'm going to engineer this new

minimal organism.

And I'm going to define what reactions to put in there from scratch. And I'm going to
create a whole bunch of new ones that didn't exist before. OK, in the future, will we

be able to do this? Hopefully, OK?

Not quite yet-- this is really where the action of right now. And again, driving force
for this is how inexpensive is DNA synthesis. And so we're following some kind of

Moore's law with respect to dropping costs in terms of DNA synthesis.

And this is one of the enabling-- | don't know if it's-- it's not the only enabling
technology. But is one of the most important enabling technologies is the fact that it
is less and less expensive to be able to order longer and longer sequences of DNA.
And so this notion that, for example, you'll be able to design something that's, again,
that's 20,000 to 50,000 bases of DNA and just go online and order to that and have
your advisor willingly pay for that-- not at the level of 20,000 to 50,000 bases yet.
But that's going to change.

And that's going to get to the point where those really become available to
everyone. And | think that's going to fundamentally change how we do business in
biological engineering and how we do, | would say, almost everything in biology as a
whole. So if you have-- even if you don't care about engineering new biological
functions but you want to understand biological systems and your adviser told you,
well, just design a whole bunch of circuits that will allow you to regulate things in
arbitrary ways to learn something about the underlying networks that control a
natural systems, again, | think that that fundamentally changes what kinds of

questions you will ask.

OK, so I'll talk about basic design. I'll talk about scalability. So how do we go from

these basic elements to bigger and bigger things?

And then I'll talk about some recent things that we're doing where we're building this
foundation. But we think that this foundation then can matter. | think this foundation
can change how you approach things that really don't have the greatest of

solutions.

Now, they really change the paradigm, for example, for cancer, for this notion of
building tissues by design on chips and for diabetes and so on. OK, so we start with
parts. So just about everything that we do, we define what are the basic parts that

are available in our toolbox.

And so these will be transcriptional regulatory parts. We do things at the
translational level. We do things also at the protein-protein level. One of the things

we often do, not always, is engineer cell-cell interactions. Could be by means of cell-
7

cell communication.

We often want to find out what's going on in the cell. So just like when we program--
where we create a new software, new computer program, we have debugging
outputs that tell us what the program is doing. Usually, the way we do this is with

fluorescent protein. It could be with dyes too.

So they tell us, you know, here's how your circuit is behaving. Here's how the cell
might be behaving. And another set of parts would be ones where we want to be

able to create sensors and actuators inside the cell.

What are specific biomarker levels? How can we affect what the cell is doing? For
example, one that gets used a lot is kill the cell is one of the favorite actuators that
people are using. Another one would be, let's say, tell this stem cell to differentiate

into a different cell type.

That would be another kind of actuator. A different one might make the cell-- make
this high value compound that would be relevant for some application. And so right
now, if you're looking for parts, they actually used to be stored in Stata up until-- or
big libraries of synthetic biology parts were stored in Stata that up until about two

years or so. So | don't know how many people know about iGEM.

Any folks know about iGEM? So iGEM was started at MIT, was headquartered, as |
mentioned again here, in Stata. There are these couple of big freezer that were on

the, | think, the fourth floor here.

And they stored 5,000 to 10,000 parts that word commonly used by synthetic
biology folks. OK, so now they moved over closer to Cambridge brewing company.
And they're not affiliated directly with MIT anymore and they have 15,000 parts or

so available.

So if you want to get started in synthetic biology, this is one quick way to do that.
You can contact iGEM headquarters and say, please send me 1,000 parts, OK?

And as long as you're credible and not from one of those blacklisted countries, then

8

they typically will send it to you.

So that's a good way to get started, OK? So what are these parts? So this is actually

going back to my Ph.D. here. This is one of the parts that | characterized.

So this notion of an inverter-- so digital logic convert. So | assume people here--
everybody is familiar with logic gates. Is that true? OK, raise your hand if you are

familiar with it.

| just want to see- oh. Just trying to calibrate-- and again, ask me questions. So this
notion that you have a single input, single output device that works on binary values

that has-- basically inverts the signal. So you have zero on the input.

You have one on the output. One in the input, you have zero in the output. And so
one of the ways in which you can implement this in a biological system is just use

transcriptional repression.

OK, so if you have no repressor present, then you have a high level of output
protein. If you have a repressor present, it represses the production of the alpha

protein. And so in theory, you should be able to use this as a digital logic gate.

OK, and so that-- sounds-- looks pretty simple here. But for my Ph.D., it took me
about three years to do something like this just to give you an indication. Now it's a
lot faster. Now you can do this in-- you can do many of those in a day. So there has

been progress.

Here's another one of those gates that | used for my Ph.D. And so this is now not
just a repressor, but a repressor that can be inactivated by a small molecule, OK?
And so the way it works is you have this repressor that works as before. And then
when a small molecule comes in, it prevents a repressor from binding the promoter.
And as a result of that, even if the repressor is present, you can have activation of

the output protein, OK?

So this is what's called a not x or y or it implements the implies logic function. How

many people use the implies logic function to do anything? OK.

So it's not a commonly used logic function. And you won't find it-- there's no logic
gate that does the implies logic function in a typical computer. But this is a useful

logic function that we can implement in cells.

And it allows external control of gene expression, OK? And so this is a simple way--
and so once you can do that as a user, essentially you can interact with the cells
and modify what's going on inside the cell, OK, using a pretty simple looking
mechanism that predates synthetic biology, if you will. But | don't know if it was

called the implies logic function before.

So anyway, so then logic gates-- can we build logic circuits? This is where | would
say synthetic biology starts kicking in. And so this is one of the first logic circuits that

we built.

And the question was, OK-- looks nice to have this logic gate representation. In

biology, does this make any sense at all? Can you really do digital logic inside cells?

Can you take noisy biological components and actually implement reliable digital
computation in cells? And it wasn't an obvious thing, | would say. Is it 100% obvious

now?

In some situations, | think we can claim that we can build digital logic that's
reasonably reliable. So in this particular case, I'm showing you this implies logic
function that allows us to have small molecule induction of a cascade of not logic
gates or transcriptional repressors. And so the nice thing about this in particular is
the fact that this is the input output steady state is that as the circuit so goes from
blue to black to this yellow color here is as the circuit gets longer, as a cascade gets

longer, it actually becomes more digital.

It actually becomes more step-like, OK? More on off. So we're going from this blue
input output function to this yellow. So now we have over 1,000 fold change in the

output in response to two to four fold change in the input.

OK, and then we have good noise margins, good signal restorations, all these good

10

things that we need to have for the creation of larger and larger reliable digital

circuits. So the basis of digital computation is that you have-- and the reason why
you can actually create computers is that you can have logic gates that do signal
restoration-- that the output is a better representation of the digital meaning then

the input. So as the signal , propagates this analog signal could be voltage.

But it could be protein concentrations. As it traverses through the logic gates, it
needs to actually become cleaner in order for us to be able to have reliable digital
computation. So people have figured out how to do this with electronics a long time

ago.

We figured out how to do it with synthetic biology, let's say, 10 to 15 years ago. And
nature has figured out how to do this billions of years ago, OK? So things like
cooperativity-- so | assume you've looked a little bit on cooperatively in, let's say,

gene regulation.

OK, so that is a situation where you get a nonlinear response in a system that
biology has figured out is a useful mechanism so that signals that come in actually
result in some kind of actual digital behavior. So you get non-linear signal
processing in these regulatory elements. And at the end of, let's say, a signal

transduction cascade, the output is either high or low.

There's no-- for the most part, there's no in between. The transition between high

and low is super fast. OK, so in a sense, that's creating digital or discrete outputs.

And that's really critical for many situations-- certainly in synthetic biology, but many
situations in biology as well. So one example would be, let's say, stem cell
differentiation. You want the cells to be able to make a discrete decision. Should |
make-- should | become a kidney cell or a liver cell or a muscle cell and so on. So
those are discrete decisions that have to be made by the cells. And so the cells
have come up-- or nature's come up with mechanisms to guarantee that. And so

we've now figured out how to do that ourselves in a synthetic fashion as well.

It's important to note that when we engineer these systems, we don't just think

11

about digital behavior. So we spent an equal amount of time perhaps thinking about
how to implement things that have transient properties or things that have more
kind of analog behavior to them. And that's absolutely critical to be able to program

cells to do whatever we want.

So this is an example where we have engineered cell-cell communication where
sender cells make a small diffusible molecule which then goes to receiver cells. OK,
so0 now the receiver cells don't just have an on response, but rather they have a

pulse, OK? So a signal travels from the sender to the receiver cells.

And the cells, what we engineer them to do is have a pulse response. And the idea

is to have GFP go up-- a Green Fluorescent Protein go up-- and then go down. And
so to be able to do that, we engineered a feed forward motif where we have binding
of the small molecule to this activator which activates two things simultaneously-- a

green fluorescent protein and a repressor which then represses the green

fluorescent protein.

And then-- so the idea is that the green fluorescent protein goes up. And then
eventually, the repressor builds up to sufficient levels to repress the green

fluorescent protein. So again, one of those simple looking motifs.

This is about three years to actually make that happen around the 2004 frame.
Looks simple. If you study a naturally occurring system that has this motif, you say,

oh yeah-- no problem. Yeah, we have this feed forward motif.

And obviously, you can do this kind of information processing function. Let's move
on to another motif. You actually try to build this in a lab in a new organism, I'm not

sure if it can drive you insane. But it is not trivial to actually make it work.

It's much easier now than it was 10 years ago. But you still have to pay attention to
a lot of things-- rate constants, threshold matching, and so on to actually make it
happen. But eventually, after looking-- creating-- so this is our first attempt at this

was this blue line right here. So a completely flat line, OK?

Input comes in, nothing happens. So | would say that pretty much typifies synthetic
12

AUDIENCE:

PROF. RON
WEISS:

biology maybe up until today. You build something. You think it's going to work. It

doesn't work.

And then you stop crying after a little while. But then you have to think about how do

| fix this. And so this iterative design debug cycle is absolutely critical.

So what you normally do is you create computational models that tell you how
different rate constants in the system affect the behavior of your circuit, OK? For
example, you could do sensitivity analysis. Which rate constants have the most
influence on the performance of your system? And so we did some sensitivity
analysis here and learned that, for example, the degradation of this repressor
makes-- one of the things rate constants makes the biggest difference is on the
performance of the system or its affinity to the binding site on its respective

promoter. Yes.

Just knowing the sheer [INAUDIBLE] entire circuit, it started off with the
[INAUDIBLE] constant?

No. | wish it was. Because that would make life a lot easier.

And we are trying to get better at that. So we're trying to-- so here's maybe two
ways of thinking about that. One challenge would be somebody comes in, gives you
DNA sequence, and you have to predict the rate constants. OK, so | would term that

person an adversary, not your friend.

It's just too hard to do that. Now, an easier task would be give your adversary or
friend limited choices and say in the freezer, | have these DNA sequences that
consist, let's say, of specific promoters, specific ribosome binding sites, specific
proteins with specific degradation tags on the proteins, OK? And that's-- you're
allowing that adversary or friend to only use those elements in the design of a

circuit.

And then they come back to you and they say, now predict what the circuit will do.

You still-- it still doesn't work yet. But | think-- but | would say that's how we would
13

phrase the challenge, OK?

Stick to things that we know and allow us to even characterize those things ahead of
time. What we have that-- unfortunately, | don't have that here. But what we have
done-- so people can get a kind of a general characterization. So they can say it'll

be roughly this input output behavior.

And when | say roughly, the errors could be on the order of five to 10-fold. That's

approximately what's been published so far. Now, five to tenfold depending on your
perspective could be great because it's biology or could suck if you're an engineer.
It just depends on if you're trying to do something like get green fluorescent protein

to turn on and off, tenfold is probably great if you're doing this in a Petri dish.

If you're trying to create a cancer classifier circuit you put into humans to kill cancer
cells but not harm healthy cells, tenfold is probably not great | wouldn't take a circuit
like that into me, especially if that circuit controls, for example, the production of a
killer protein, which I'll try to show you a circuit that does that. We recently have
been able-- we're in the process of submitting a paper about this-- been able to
show that if you have really good characterization of regulatory elements such as
these repressor devices-- and you have to do a lot more characterization and you
do the-- we can get within 20% on average on predicting the behavior in

mammalian cells, actually.

And so as an engineer, | would be happy with 10%, 20% percent for many, many

applications. So | think we've gotten better at it. But it's not quite perfect yet.

One of the things about that approach is that we don't necessarily know the rate
constant for everything. What we do know, however, is a very detailed behavior,
both steady state and dynamic behavior, of a repressor promoter pair. So we don't
know, for example, what's the binding affinity or what's the rate constant for the
repressor binding the promoter, what's the rate constant for RNA polymerase

binding that promoter, what's the exact translation rate or transcription right too.

But we do know what's the input output behavior. And that's actually been enough

14

to get really good predictions. But | would say these kinds of predictions are one of
the most important aspects and challenges and bottlenecks of synthetic biology. So
those include-- again, the challenges include how fast can you build DNA. But

wouldn't it be nice if you can actually predict what the DNA does?

So it's just as important, if not more. And also having-- so those are two of the
important challenges. I'd say another one would be-- OK; so if you can predict
things how many parts do you have in your freezer that you can actually put
together and they're well-characterized actually now build the circuits? Probably

three of the most important challenges.

And so if you go back to what we'll call the post generator, this is a loop tape of
bacteria that now respond to the pulse. So sender cells that then secreted the small

molecule then went into receiver cells. And they light up.

So one of the things to note here is that it works. The other thing to note here is that
it's not perfect, right? And so the amount of heterogeneity here | think is quite

astounding.

So if you take the average behavior, it's actually quite predictable. But if you now
start looking at the distribution in the response, it's staggering. And we quantified

that.

And so we quantified what's the distribution in terms of the fluorescence levels that--
the peak and also the buildup and so on. And we then correlated that also-- we
created the stochastic simulations that then correlate reasonably well with the
system. So we can get simulations to generally correspond with what we're seeing

at the population level.

But I do want to bring up this point that when you think about engineering biological
systems, don't try to figure out how to engineer a single cell to do something
reliably, OK? So you always want to think about kind of statistical engineering. You
want to think about, I'm going to create a circuit. And when | put this circuit into a

population of cells, this is the distribution of behaviors that I'm going to get.

15

Because if you're trying to depend on any individual cell giving you exactly the
behavior that you're looking for, it is just-- it's going to fail. So you have to really

think about distributions. And that | think changes things a little bit.

So that's not normally the way you think about-- maybe that's the way Microsoft
thinks about programming. So if 90% of the time, the computer doesn't crash, that's

pretty good. Probably Bill Gates agrees with that, right?

But that's not what we want. That's not what we typically do with software. So to kind
of further think about this in terms of populations, we program something else which

was a pattern formation.

So now we have the desire to create senders and receivers where the senders
send the same message to the receivers. Now we have a longer feed forward motif.

OK, so this feed forward motif has two branches.

And so these two branches actually have a different impact on the final output. One
has-- there's two repressors meaning that input comes in. It activates a fluorescent

protein and another one represses the fluorescent protein.

OK, so it's an incoherent feed forward motif. And so what we use that here is not for
post generation, but rather to define a range of concentrations that would turn on
the final output, OK? So it would be activated-- the range of concentration would be
activated starting with this branch right here and then ultimately repressed by this.

So this defines the low threshold and this defines the high threshold.

So under the low threshold, nothing gets activated. Whenever you have just the
right amount, it activates this which represses this which allows this fluorescent

protein to get turned on. OK, so this branch right here is more sensitive.

So it defines when this thing goes up, when the response goes up. And then this is
less sensitive. So this defines under high concentrations when the output goes

down.

So we basically have a non monotonic response to the input, which is low then high

16

then low. So that's the design that we had in mind. And the idea is that whenever
you put, let's say, receiver cells everywhere in a Petri dish and you put senders in

the middle, then the communication signal basically builds up.

There's a chemical gradient. Each cell interprets the chemical gradient and then
decides whether to make a fluorescent protein. And then only-- because there's this
steady chemical gradient due to diffusion and decay of the signal, then you would

get some kind of a bullseye pattern.

So that was the hope at least. And so to give you again a timescale, so it took me
about | think three hours on a plane to make the slide. It took us about three weeks
to create the computational model. And again, for whatever reason, three years was

the magic number to create the actual functional circuit.

So that was an older version of PowerPoint. But | haven't tried it on the new. But

anyways, so we created this.

This is a computational model. We actually used a computational model to predict
how changes in rate constants would affect this band detect, the region where we're

actually responding to the signal. And we used that to engineer different responses.

And so we created eventually three different responses input versus output. And we
put different fluorescent proteins on them-- a red fluorescent protein and a green

fluorescent protein.

This is the experimental set up over here. And after 16 hours of waiting, this is

basically what we got. So we got a lot of bacteria to make all kinds of patterns.

And we were very happy about this. We danced around in the lab a little bit-- you

know, yay! So this was fun on those rare occasions where things actually work.

So we said, let's have some more fun. And so we put senders in other
configurations. And so we have programmable patterns of bacterial communities.

So I'm not sure of is this useful.

I'm not sure by itself besides having some fun with it. But one of the things we're
17

using this for right now-- and depending on time, | may get to that later-- is this
notion of embedding these circuits in mammalian stem cells or actually also in
human IPS cells so that we engineer these human IPS cells to communicate with
one another to make decisions. And then those decisions actually lead to

differentiation patterns, right?

So you can imagine in principle, if you can create three dimensional versions of
these and use those to cause the cells to make differentiation decisions so that red
would mean make neurons, green would mean make muscle, different colors--
yellow would mean make bone and so on. So in principle, you might be able to

create tissues by design.

OK, so that's something that we are working on actively in the lab right now. So we
don't quite have a working heart in a Petri dish yet. We won't for a little while. But we

taking some baby steps along the way.

And so we have been able to get cell-cell communication to work. We've been able
to get programmed stem cell differentiation to work. And hopefully, I'll be able to
show you some images that we have of some recent examples where we take
human IPS and actually created these embryonic liver buds that have lots and lots
of interesting-- and actually all the cell types that are known to exist in the

embryonic liver.

So there are some progress along the way. Now, we don't anticipate to replace your
liver, you know, any time soon. So don't destroy it. So actually one near term
application that we're specifically looking at is if we can take-- imagine taking your
own fiberglass, de-differentiating them into human IPS cells-- those are your human
IPS cells-- and then differentiate them into, like, this liver-like environment and put

that in a Petri dish and then test out the effect of drugs on your mini liver.

OK, so maybe it's a good idea to test drugs on things that resemble human tissue
as opposed to some random mouse that may or may not be as correlated with what
the drug would actually do to actual human cells. And if we actually even do it in the

patient specific manner, | think that really changes the way drug development would
18

actually work. And that's something that | think within the next few years could

become a reality.

They're talking about the next-- beginning to do that within the next one to three
years in a laboratory setting. So | think that is near term and realistic. So one of the
things that we did notice is that when we engineer the small systems, its intuition

works quite well.

So | can look at this circuit design and say, if | modify this, this is what's going to
happen. If | modify this, that's what's going to happen. So you can use intuition and

it works reasonably well.

And what happened in | would say the first 8 to 10 years of synthetic biology, every
paper would have a computational design. But most of those would build something.
And in order to publish, we also tacked on a computational model that correlates

really well with the experimental results.

And we are just as guilty of doing that as anyone else, OK? So it wasn't critical to
have a computational model to create something successfully in the lab. And | think

that that is changing.

So we have examples right now of designs where-- I'm not sure if I'll get to that
today, but we have published on that-- designs where it involves about 20 to 25
components. And it's related to a diabetes system the retired engineer where we

can have intuition about it. But our intuition doesn't work great anymore, guys.

So we might have some intuition about the system. But the computational analysis
would all of a sudden shed light and provide insight that is very difficult to get this by
drawing this thing on a blackboard. OK, and so | think that computational design
tools are becoming absolutely essential. They can provide insight into system

behavior that you can't get just using intuition alone.

But in another aspect of computational design is one where imagine being able to

specify want this behavior. And then the computational design tool says, here's

19

1,000 different versions of circuits that you should build and test. OK, and so it's still
difficult for a human to generate easily 1,000 different versions of a circuit to build

and test.

It is becoming easy to actually build-- | wouldn't say-- maybe easy is a strong word--
feasible to generate 1,000 versions of a particular circuit. I'll give you an example.
Very recently in my lab, one of the graduate students has come up with a

framework that-- he is generating 200 versions of a circuit in three hours, OK?

And they're pretty much gotten to the point where they're all correct. In three hours-
- so that really, | think, changes what you do in synthetic biology. And so again,
having that be connected to a computational design tool that tells you which ones to

build would be rather useful.

And so specifically recognizing that-- this is a collaboration with some folks at BBN.
And actually Jake Beal was one of my former graduate student colleagues. So he

was in the same lab as me. And then Doug Densmore is from Boston University.

And so the notion here is that this is what we want synthetic biology to look like. OK,
so if you're trying-- or maybe all of biological engineering. But we'll start with
synthetic biology. So if you want to program biology, should you really care what the

ribosome binding site is for the lambda repressor?

You know, hopefully not, right? What you should do, just like when you program
your simulations in MATLAB, you don't think about, well, here's the shift register in

this Intel Pentium chip. And this is how it's working to simulate this ODE over here.

That's just not the level at which your program. So you think really at a high level.
And then you have compilers and lots of infrastructure that takes care of everything

in between.

And so maybe someday in the future, the graduate students maybe five to 10 years
will look back at synthetic biology graduate students now and would just have a lot
of pity for them and, oh my god. You actually had to know what elements you were

using in circuit and actually build them by hand? You know, wow. And so here's a
20

notion that we start with a high level description.

And by the way, this is now-- there's a website that you can go through right now
and get a free account and then type in a high level program. And it will actually
create a low level genetic circuit representation. It will also give you MATLAB
simulation files of this. And so, in this course I'm teaching to undergrads right now
that many of them didn't even hold pipettes before they started the course, one of

the first things that we taught them was this tool.

So before telling them, for example, this is the way the lac repressor works by DNA
looping, we said, there are these things called repressors. And when there's more

of them, there's less output. Now let's design with that.

This is, | think, heresy to biology as a whole probably. | don't know that-- this is the

first time that we've actually tried to do that. And | think it's actually worked out OK.

But teach them enough so that they can move forward. And then, yes, let's
simultaneously be teaching them about the underlying biology and mechanisms as
much as they need to know. But what can they do if they just know that there's this

thing called a transcriptional repressor?

And then the bio compiler will figure out everything that needs to happen. And so
we're actually-- so they did a whole bunch of designs. And starting next week, we're

going to be testing them out.

So we will find out whether that was a useful way to teach biological engineering.

But | think so. | think it is.

Because they seem to understand what design means, OK? Because that's a thing
that we focus on-- design as kind of a first class object. OK, so what you do is you

write code that looks like this.

Has anybody programmed in code that looks like this? It should be-- so Lisp. OK,

one person only? Any computational?

21

OK, we usually get one or two people. But | was hoping for more here. So anyways,
for the people that should be ashamed of themselves and haven't programmed in

lisp, this is a simple program.

This is, if the input is high, it produces cyan fluorescent protein. Or else, it will
produce a yellow fluorescent protein. And so the bio compiler then automatically

takes that and first translates that into a data flow.

So you have a data flow-- and I'll actually go through an example of that-- and then
creates an abstract gene circuit and then looks at essentially what you have in the
freezer and says, well, this is the actual DNA sequence that would implement this.
And it creates robot instructions to assemble this so that God forbid you would have
to actually touch a pipette to build this. And then we have a robot, liquid handling

robot, that does most of the assembly.

Now, this pipeline is not fully end to end yet. So it's not-- if you came to my lab right
now, the still-- | could tell you that this works but then | would be slightly lying. Is--

mostly works.

But it's actually-- there are companies right now that will go from this level-- about
this level-- not this level, but this level. And actually, this is mostly automated. So-- to
the point where the only thing that's not automated is somebody, not necessary
your op, but maybe a technician goes from a robot and takes a plate and puts it in

another robot. And, like, everything else is essentially automated in DNA assembly

So those companies have, | guess, more money than us. But eventually, this is the

way DNA assembly will happen. So we're collaborating with some people.

I'm doing this with microfluidics. The problem with this robot-- it's $150,000. So we

can't put it on everyone's bench yet.

But we are collaborating with Lincoln Labs to have microfluidic devices that would
cost around $3,000 that would do this. And we've already demonstrated with the
microfluidic devices we can do DNA assembly of large circuits. So this is not that far

away that everyone will have microfluidics. They program here.
22

And they get the DNA assembled. And then they realize it doesn't work. But at least

there'd be a lot faster to realize that things don't work, which is good.

So let's look at how this compiler, bio compiler, works to see that it's not magic. So
this is saying green if not IPTG. So IPTG is a small molecule that we have a sensor
for. And then the information gets routed to an inverter which then gets routed to

activate a green fluorescent protein.

So you can take a program specified like this and automatically convert it into a data
flow graph. And then the data flow can be translated-- again, this is automated and
this is also automated in a rather simple way-- to an actual portions of the gene

circuit. So IPTG sensor is simply this motif.

So you have a repressor that responds to IPTG. And then it basically inactivates the
repressor. So more IPTG, more output. And so this is the IPTG sensor box. And this

is how you implement this.

Not gate-- so | showed you how a not gate already works. So a repressor represses
the output. Green fluorescent protein, you just have to have an activator that

activates a green fluorescent protein.

So every data flow box can automatically be converted into a small motif. And then
what we're missing is the glue. And so the glue is just these transcriptional

activators and repressors.

And so once you put them in there, then this is a circuit. And so this is an automatic

way to go from here to here. And it can do rather complex circuits and logic.

It can't do everything yet. But it can do an interesting set of things. OK, so this is--
again, it's not completely finished in the sense that | haven't told you what Ais. |

haven't told you what B is.

So there's a whole bunch of things that still are-- we have-- either published on or

still need to be designed. But there is, for example, tool called matchmaker which

23

AUDIENCE:

PROF. RON
WEISS:

will decide what's a good protein A, what's a good protein B. So things like that-- so

those things already exist.

Anybody look at this and figure out why this is not perfect? So we have an input that
represses a repressor, which means that more input, more activator-- sorry. More
input, more protein here, which represses B, which activates GFP. So the compiler

spits that out automatically.

But you may not want to build this right away. Any ideas why? I'm sure John would.

So basically, you have this A can directly repress object, so you activate B?

So this is what it-- the first version of B. But A represses B. B activates GFP.

So why not just hook A up to regulate GFP directly? So this seems like a non-

optimal solution. And so you can get the compiler to figure that out too.

And so what you do is you say copy propagation. So these are actually just tools
that are available. These are mechanisms that are part of normal compilers--

normal software compilers.

So they do something called copy propogation-- means that A, if it sees that A-- the
compiler sees A regulates B, A represses B, and B activates A. So you can just say,
well, let A just directly regulate this. And then the compiler realizes, well, B doesn't

do anything.

Let's get rid of it. And then the promoter doesn't do anything. Let's get rid of it. And

now the compiler figured this out.

And that's using just basic compiler technology. OK, so it's able to do that. So the
difference in your life between four and three may not be huge. But the difference in
your life between 15 and five could be the difference between getting your Ph.D or

going insane, dropping out, and then starting a company and becoming a billionaire.

OK, so-- but this is what the compiler can do. And that does make a difference. And

24

it may be able to come up with optimizations that you wouldn't be able to really
easily come up with or even at all under a reasonable amount of time. So the

compiler can do combinatorial logic.

It can do state. There's also some aspects that can do spatial things as well. And

again, this is available online right now.

I'm going to-- maybe | should skip a few things. So very quickly, I'll tell you. So in the
lab-- so it's nice [INAUDIBLE] But if you can't do anything in the lab, then nobody

believes you in the world of biology or synthetic biology.

So we can build big things. So here, you can-- there's a library of promoters and
genes that we have available. And you can decide, | want to build a new circuit has
these promoter gene pairs. And within five days, you can create in the lab that
circuit. And we've been able to demonstrate things that are 61, 64 Kb that you build

in five days.

And you build them efficiently. And then the undergrads that we're teaching also
have been able to-- again, these are people to barely knew what pipette are in the
beginning a semester can now efficiently build large circuits. So that's become an

easy to use technology.

And then | mention this notion that you can build this one at a time. But this very
recent development where you could build 200 versions of these at a time. OK, so

you can build them.

We can then-- again, I'll skip this part. You could build them. You can put them into

mammalian cells. These things work.

And we have lots and lots of parts-- regulatory parts. And so let me skip this
particular example. So this is-- the two sentence explanation is, OK, you build lots of

parts. You can build modules. And then you put modules together.

And guess what? This is biology. So these modules actually affect each other,

potentially in undesirable ways. So they can place things like load.

25

So whenever you have a module that works really well-- maybe | will show you one
slide. But | won't show you how we solved it. But one slide-- so this is a circuit. Any

idea what this circuit might do?

So this is a regulatory circuit. They have an activator activating itself and a

repressor that represses the activator. Have you seen this motif?

So it's a-- some people are whispering to themselves, doing this. So this is a
relaxation oscillator. When you do it by yourself, it works great. So these are

simulations.

But then if you connect it-- so it's nice to have an oscillator in a cell, again, if you
want to have blinking bacteria or mammalian cells which is, again, fun. But then you
typically want to connect it to something. So you spent three years building an

oscillator, got it to work.

And now your adviser says, OK, let's just get a paper on this. But before we get the
paper, | want you to connect it to something meaningful. Because we want to go for

a high impact journal.

And then you connect it to something. And you realize that it doesn't work anymore.
| think you're really pissed off at-- you will be pissed off at your adviser. | don't know

if your adviser would want to be mean to you.

But anyways, so that's a real problem in biology or synthetic biology is that these
things have impacts on each other that, first of all, are going to be undesirable but
because of unique aspects, for example, of the substrate. Now, they're not as
unique as you might think because these load issues also come to play in electronic
circuits. And so in electronics circuits, these things have been solved decades ago

with these notions of load drivers.

So if you have a module that has, for example, high fanout and it controls many
things, then guess what? Those things that it's trying to control, even though the

arrows are pointing one direction, they actually have an upstream effect too. So

26

those modules that you think you're-- the downstream modules that you're just

controlling, they actually have an impact on the upstream.

So what you do-- in electronics, you just build a load driver. And it basically takes

care of things. So now there's no kind of parasitic effect.

And so we've demonstrated that we can also build-- so this is a notion of
retroactivity. And this is work with Domitilla Del Vecchio here. And we've
demonstrated that we can-- so | wont' go into the details here-- so we can actually

solve this.

So this is a real problem even in simple circuits experimentally. And then it uses this
cool notion of timescale separation to solve it. But we can take these things that are

highly affected to go from black to red and put a load driver in and then it fixes it.

So this should hopefully lead to the generation of much more predictable circuit
construction targeting one of the real challenges in scaling going from simple toy
modules to large scale systems. So I'll skip that and then move on to another
example-- oh, sorry, an example of an application. So in this particular case-- again,
besides turning GFP on and off, what can we do with synthetic biology that we can't

necessarily do without synthetic biology?

And so one of the most important challenges in cancer therapeutics is specificity--
perhaps the most important. There are other things that are important such as
delivery of a therapeutic agent. But as you improve specificity that it can actually

change how you do delivery of a therapeutic agent.

So if you have a therapeutic agent that's much more specific and has no side
effects, you can deliver lots and lots more. So these things are highly related. So
imagine a therapeutic agent that recognizes something on a cell surface and then

says, this is a tumor cell. Kill it.

So there are actually a lot of efforts ongoing that have this particular approach. So
whether it's small molecules, whether these vesicles that contain various cell

surface-- various molecules that bind to cell surface receptors, a really hot area
27

right now is these engineered killer T cells. So this notion that you can actually
engineer your immune system by placing various receptors on these killer T cells
which then go and then bind tumor cells by recognizing something on the cell

surface and then kill those.

Sounds great, maybe, depending on your perspective, or not so great, depending
on your perspective. So what's happened with those is they're really sometimes

great at eliminating your tumors. But then the side effects can be horrendous.

And so what happens is that those cell surface markers that exist on the tumor
cells-- guess what? They're also present on healthy cells as well. And so the side
effects for those killer T cells approaches have been, | mean, just terrible in various
patients. So one-- this should not be a shock. One marker is typically not enough to

distinguish a cancer cell versus a healthy cell.

Seems pretty obvious. So actually, what they've been doing with these engineered
killer T cells is now just saying, OK, has to be this cell surface receptors, but also
cannot be this. So it's like, and biomarker one and not-- you know, biomarker one,

and not biomarker two.

OK, so they're starting to engineer more logic into these, more multi-input logic into
these things. And so they haven't done any clinical trials. But | saw a couple weeks

ago where they've actually made progress in Petri dishes.

So we recognized this as an issue several years ago. And this is work with Coby
Benson. And so really, all the information that you want is actually inside the cell to

make a highly precise decision about whether this particular cell is cancerous or not.

OK, so the idea is when the therapeutic agent, does the computation by integrating
multiple pieces of the sensory information and then decides whether to express a
killer protein or not. Now, even if this is not the cure for cancer-- can't really
guarantee that, right? But even if this is not, just this notion of being able to create
multi input circuits to go into cells and analyze in live cells real time what's going on

in the cell with various molecules that might be interesting-- that has applications |

28

would again say just about anywhere you could imagine in biology.

So one of the things, for example, we're looking at-- | mentioned this notion of
organs on a chip or programmed organs on a chip. So one of the things we're
looking at now is placing these types of sensory circuits into cells within this organ
on a chip. And so the idea would be expose cells to these drug candidates. And

then the cells light up in different colors to tell you how they're responding to it.

So for example, certain color green would mean just fine. Green with red and yellow
would indicate that some apoptotic pathway is being expressed or this drug is
affecting this proliferation path or this pathway or that pathway. And so these
mechanisms can tell you in real time in single cells-- also specially-- what kind of

impact there is to, let's say, the drug candidate you're looking at.

So again, this is something that | think would have an impact today if it was

available, but realistically making prototypes within the next year to three years.

OK, so we started with looking at HeLa cancer cells as an example. And so we did
some bioinformatics. And we saw that based on microRNA profiles that were
available to us, this would be a bio program that would distinguish HeLa cells from

all other cell types. And so some of you are familiar with this way of annotating logic.

Pretty ugly if you're not used it, but it's simple. This just says, these microRNAs have

to be low and these microRNAs have to be high. And that's a HeLa cancer cell.

Because that's the basic logic in this. So it's a rather simple logic statement. What
we would argue is that every cell type would have a logic statement that would be

true of that cell type and not true of other cells. It's almost by definition.

There's something different about that cell than other cell types. Now, it gets
interesting when you start talking about heterogeneous population. So for example,

and that's-- | won't get into details about that.

But there is heterogeneity. There's heterogeneity in tumors. So the cool thing you

can do-- this is a six input and gate. So if you have heterogeneity, where you can do

29

is you can have a six input and gate with an or operation.

So you can identify this sub population of the tumor has this microRNA profile. And
this cell population has a different microRNA profile. And all you have to do is create
a new logic circuit and just combine them as like a cocktail drug as an or gate. So
this is a really general approach that I think should be relevant, again, for any kind

of population.

And you can also set the thresholds and have all these fun things that you can do
with it. So | think the question really is, is that microRNA expression profile
sufficiently small so that it can be encoded on a circuit that you can deliver into

cells? And can you do it reliably?

That really is the challenge. OK, so the idea is that you have a therapeutic agent,
goes into a cell does the computation, and then decides whether to make a killer
protein or not. OK, so how does this actually work? So how do we implement an and

gate with inverted inputs?

OK, so that's one portion of the circuit. So it's actually-- for microRNA, it's actually
pretty easy. So what you do is you put microRNA target sites on the gene of interest
or the output gene. And so the idea is that the only way that this gene is being
expressed, this output protein is expressed, is when this is low and this is low and

this is low.

So in principle, this is pretty easy to do. OK, so that's how we have a three input and
gate with inverted inputs. And now we can add logic to that. So now if we want to

make sure that the output is high also when this input as high as well.

And so what we do-- so remember the first circuit that | showed you was this
cascade. And the cascade was a bunch of repressors that would then cascade that
did the not not operation. So when you think about the not not operation, it doesn't

seem like a very useful operation.

But this here, the not not operation, is actually useful. So it can convert a microRNA

sensor into something that can be integrated with other sensors to create the four
30

input logic function. So this microRNA has to be high in order to repress this

repressor which then represses the final output.

So the only time that the final output can be high is when this is high and these

three are low, OK? And then you can continue. And you can add another one.

This is slightly more complex in the sense that now, essentially the sum of these
microRNAs has to be high in order for this branch to allow expression here. So it's
slightly more complex in the sense that it's not just-- it's like a plus-- again, like a
plus operation, which we found to be actually the relevant operation here. And so
the only time the output high is when this microRNA is high, combination of these

two is high, and these are low.

Anybody see a potential problem here? A potential crosstalk? So everybody here

understand the circuit?

Raise your hand if you actually understand the circuit. OK, that's not a lot of people.
OK, maybe | should go back for a second. Everybody-- raise your hand if you

understand this.

OK, so if microRNA is high, they repress-- they result in degradation of the RNA. So
all of these have to be low in order for this to be high. OK, now if we had this, this

RNA-- let's focus just on this maybe to simplify.

So this microRNA represses-- this is a repressor which represses this, OK? So if this
microRNA is low, then this repressor as high. And as a result of that, this repressor

represses this promoter regardless.

So it doesn't matter what these are. If this is low, this repressor is high. And then

there's no way that this output can be high.

Now, if this is microRNA is high, then this becomes low, allowing this to potentially
be high. Doesn't guarantee it, but it has a potential of doing. OK, now raise your

hand if you understand that. OK, more.

31

AUDIENCE:

PROF. RON
WEISS:

AUDIENCE:

PROF. RON
WEISS:

AUDIENCE:

PROF. RON
WEISS:

OK, cool. That's progress. By the way, this was not a trivial circuit. There's a lot of

connections here.

And then we connect the same-- now we have the same repressor. So this
microRNA-- these set of microRNAs repress the same repressor which is now
repressing this. So why is it the case that you need-- let's just assume this is one

microRNA, this is another micro.

Why do you need both microRNAs to allow high output? And then | will not let

anyone leave until you answer the question. And | can sit down.

So why-- and then we'll stop there. And everybody will believe me that the cure for
cancer, you got it figure it out. Otherwise-- so there's-- oh, thank you. Letting-- you

will be the hero.

So if the microRNAs are not present, then you're going to get an expression of

Lacks E. So--

Lack I.

Yeah, like eyes. So only if both the microRNAs are high and present do you repress

both of the lack I's which then allow for the expression of the--

Exactly. And what happens if one of them is present and the other one is not? So if

this microRNA is present and this one is not?

Then the lack I still gets expressed because the other one is still not repressed.

Exactly. So the only way that you can actually have no expression of lack | is when

this is high and this is high. So this is essentially like a two input and gate.

These two have to be high to allow this promoter to potentially be high. And in the
other three logic cases where one of those is low, lack | is expressed and hence

does not allow the output protein to be expressed, OK? Yeah.

32

AUDIENCE:

PROF. RON

WEISS:

AUDIENCE:

PROF. RON
WEISS:

So why do you have the partition? All three are acting the same way.

Ah, great question. So what happens if microRNA 21, 17, and 38 were all here? So

that's a great question.

So that's a question, right? So if you put microRNA 21 here, 17, and 38? What is the

logic function here? Yeah.

Then you only need one of them in order to degrade the RNA. And then you won't

get the same logic.

Great. So then it becomes essentially an or. This will be an or operation of the
microRNAs where what we want is an and operation on the microRNA. So that by
having two separate paths that have the same repressor where they converge on
the same repressor, we achieve the and operation. Where we have them on the

same repressor, they do the or operation.

That's a great question. OK, so this works. And maybe I'll say thank you. I'll stop

there.

33

