5.72 Problem set #4 (spring 2012)

Cao

I. Harmonic Oscillator

1) For a harmonic oscillator, show that $C(t) = \langle x(t)x(0) \rangle$ satisfies $\ddot{C} + \omega_0^2 C = 0$.

2) Solve for C(t) and its Fourier transform $\tilde{C}(\omega) = \int C(t)e^{i\omega t}dt$.

3) The forced oscillator obeys the equation of motion

$$m\ddot{x} + m\omega_0^2 x = f(\omega)e^{-i\omega t}$$
.

Derive the expression for $\chi(\omega)$ from the above equation.

4) Write the formula for K(t).

5) Verify $K(t) = -\beta \dot{C}(t)$ [i.e. $\chi'' = \frac{\beta \omega}{2} \tilde{C}(\omega)$].

6) *Verify the Kramers-Kronig relations.

II. The relaxation of rotational motions can be described by the rotational diffusion equation $\frac{\partial p}{\partial t} = D_R \nabla^2 p$, where ∇^2 is the angular part of the Laplacian operator

$$\nabla^2 = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \, \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2}.$$

1) Show that the average orientation $u(t) = \langle \cos \theta(t) \rangle$ satisfies

$$\dot{u}(t) = -2D_R u(t).$$

2) Show that the orientational correlation function is given by

$$C(t) = \langle \cos \theta(t) \cos \theta(0) \rangle = \frac{1}{3} e^{-2D_R t}.$$

3) Write down K(t), χ' , and χ'' .

4) Calculate the response to a monochromatic force $F(t) = F_0 \cos \omega_0 t$, which couples to the system according to $H' = -F(t) \cos \theta(t)$.

5) Calculate the average absorption rate.

(Ref: McQuarrie, p. 398, prob. 17-19)

III. Repeat the steps in Problem I for a damped oscillator described by

$$m\ddot{x} + m\gamma\dot{x} + m\omega_0^2 x = f(t) + F(t),$$

where f(t) is the random force and F(t) is the external driving force.

1) Show the position correlation function satisfies

$$m\ddot{C} + m\gamma\dot{C} + m\omega_0^2C = 0$$

with the initial condition $C(0) = (\beta m \omega_0^2)^{-1}$.

2) Derive explicit expressions for C(t) and its Fourier transform $\tilde{C}(\omega)$.

3) Show that under the external force the average position \bar{x} satisfies

$$\ddot{\bar{x}} + \gamma \dot{\bar{x}} + \omega_0^2 \bar{x} = \frac{F(t)}{m}.$$

4) Solve $\chi(\omega)$ from the above equation.

5) Derive K(t) using the expression for $\chi(\omega)$ found above.

- 6) Verify $K(t) = -\beta \dot{C}(t)$.
- IV. *Derivation of quantum response theory (Ref: McQuarrie, Berne, Kubo, Reichl).
 - 1) Define the quantum Liouville operator as $\mathcal{L}A = \frac{1}{\hbar}[H, A]$. Show that $\dot{A}(t) = i\mathcal{L}(t)A(t)$ and $\dot{\rho} = -i\mathcal{L}\rho$, where ρ is the density matrix and A(t) is a Heisenberg operator.
 - 2) Given $H = H_0 AF(t)$, use perturbation theory to show

$$\langle A(t) \rangle = \int_{-\infty}^{t} K(t-t')F(t')dt',$$

where $K(t - t') = \frac{i}{\hbar} \langle [A(t), A(t')] \rangle$.

- 3) Show that the classical limit of the quantum commutator is: $\frac{1}{i\hbar}[A, B] = \{A, B\}$, where $\{,\}$ is the Poisson bracket.
- 4) Show that the classical limit of K(t) is $-\beta \dot{C}(t)$.
- V. Spectroscopic measurements are expressed as polarization responses. We calculate the response function of a linear harmonic oscillator as an example.
 - 1) The linear response function is defined as

$$R(t) = \frac{i}{\hbar} \langle 0 | [\alpha(t), \alpha(0)] | 0 \rangle = \frac{i}{\hbar} [\langle 0 | \alpha(t) \alpha(0) | 0 \rangle - \langle 0 | \alpha(0) \alpha(t) | 0 \rangle],$$

where the transition dipole is assumed to be linear in coordinate $\alpha(t) = \alpha_0 x(t)$.

Show
$$R(t) = \frac{\sin \omega t}{m\omega} \alpha_0^2$$

Useful expressions:

$$x(t) = \sqrt{\frac{\hbar}{2m\omega}} \left(a e^{-i\omega t} + a^{\dagger} e^{i\omega t} \right), \ \left\langle 0 \middle| a a^{\dagger} \middle| 0 \right\rangle = 1, \left\langle 0 \middle| a^{\dagger} a \middle| 0 \right\rangle = 0.$$

2) Show that the same result can be obtained classically by replacing the quantum commutation with the Poisson bracket,

$$\frac{1}{i\hbar}[\alpha(t),\alpha(0)] \to \{\alpha(t),\alpha(0)\} = \frac{\partial \alpha(t)}{\partial x(0)} \frac{\partial \alpha(0)}{\partial p(0)} - \frac{\partial \alpha(t)}{\partial p(0)} \frac{\partial \alpha(0)}{\partial x(0)}$$

Useful expression: $x(t) = x(0) \cos \omega t + \frac{p(0)}{m\omega} \sin \omega t$

3) The non-linear response function is defined as

$$R(t_1, t_2) = \left(\frac{i}{\hbar}\right)^2 \langle 0 | \left[\left[\alpha(t_1 + t_2), \alpha(t_1) \right], \alpha(0) \right] | 0 \rangle,$$

If $\alpha = \alpha_0 x$, show $R(t_1, t_2) = 0$ from the balance of α and α^{\dagger} operators.

4) *To obtain non-vanishing non-linear response for the harmonic oscillator, we introduce a non-linear coordinate dependence,

2

$$\alpha = \alpha_0 x + \alpha' x^2 + \cdots$$

Show that the leading order term in α' is proportional to $\alpha_0^2 \alpha'$.

MIT OpenCourseWare http://ocw.mit.edu

5.72 Statistical Mechanics Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.