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Review of last Class
• GPS measurements

– Tracking methods used in GPS (“codeless”
tracking)

– Basic geometry of orbits (discuss more later)
– Specific details of the GPS signal structure
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Today’s class
• GPS measurements

– Basics of pseudorange measurements
– Phase measurements (allow millimeter level 

position with GPS and cm in real-time)
– Examine some GPS data.

• Positioning modes
• Dilution of precision numbers
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Basic measurement types
• Substituting into the equation of the pseudorange 

yields

• ρk
p is true range, and the ionospheric and 

atmospheric terms are introduced because the 
propagation velocity is not c.

  

Pk
p = (τ k − τ p ) + (Δtk − Δt p )[ ]⋅ c

Pk
p = ρk

p + (Δtk − Δt p ) ⋅ c + Ik
p
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delay

{ + Ak
p

Atmospheric
delay
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Basic measurement types
• The equation for the pseudorange uses the true range 

and corrections applied for propagation delays 
because the propagation velocity is not the in-vacuum 
value, c, 2.99792458x108 m/s 

• To convert times to distance c is used and then 
corrections applied for the actual velocity not equaling 
c. (Discussed in later lectures)

• The true range is related to the positions of the ground 
receiver and satellite.

• We also need to account for noise in measurements
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Pseudorange noise
• Pseudorange noise (random and not so random errors in 

measurements) contributions:
– Correlation function width:The width of the correlation is 

inversely proportional to the bandwidth of the signal.  
Therefore the 1MHz bandwidth of C/A produces a peak 1 
μsec wide (300m) compared to the P(Y) code 10MHz 
bandwidth which produces 0.1 μsec peak (30 m)
Rough rule is that peak of correlation function can be 
determined to 1% of width (with care).  Therefore 3 m for C/A 
code and 0.3 m for P(Y) code.
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Pseudorange noise
• More noise sources

– Thermal noise: Effects of other random radio noise in the 
GPS bands
Black body radiation: I=2kT/λ2 where I is the specific intensity 
in, for example, watts/(m2Hz ster), k is Boltzman’s
constant,1.380 x 10-23 watts/Hz/K and λ is wavelength.
Depends on area of antenna, area of sky seen (ster=ster-
radians), temperaure T (Kelvin) and frequency.  Since P(Y) 
code has narrower bandwidth, tracking it in theory has 10 
times less thermal noise power (cut by factor of 2 because 
less transmission power)
Thermal noise is general smallest effect

– Multipath: Reflected signals (discussed later)
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Pseudorange noise
• The main noise sources are related to reflected 

signals and tracking approximations.
• High quality receiver: noise about 10 cm
• Low cost receiver ($200): noise is a few meters 

(depends on surroundings and antenna)
• In general: C/A code pseudoranges are of similar 

quality to P(Y) code ranges.  C/A can use narrowband 
tracking which reduces amount of thermal noise

• Precise positioning (P-) code is not really the case.
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Phase measurements
• Carrier phase measurements are similar to 

pseudorange in that they are the difference in phase 
between the transmitting and receiving oscillators.  
Integration of the oscillator frequency gives the clock 
time.

• Basic notion in carrier phase: φ=fΔt where φ is phase 
and f is frequency

• “Big” problem is know the number of cycles in the 
phase measurements
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Phase measurements

• The carrier phase is the difference between phase of 
receiver oscillator and signal received plus the 
number of cycles at the initial start of tracking

• The received phase is related to the transmitted phase 
and propagation time by

φk
p (tr ) = φk (tr ) − φr

p (tr ) + Nk
p (1)

φr
p (tr ) = φt

p (tt ) = φt
p (tr − ρk

p /c) = φt
p (tr ) − Ý φ p (tr ) ⋅ ρk

p /c
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Phase measurements
• The rate of change of phase is frequency.  Notice that 

the phase difference changes as ρ/c changes.  If 
clocks perfect and nothing moving then would be 
constant.

• Subtle effects in phase equation
– Phase received at time t = phase transmitted at t-τ 

(riding the wave)
– Transmitter phase referred to ground time (used 

later).  Also possible to formulate as transmit time.
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Phase measurements
• When phase is used it is converted to distance using 

the standard L1 and L2 frequencies and vacuum 
speed of light.

• Clock terms are introduced to account for difference 
between true frequencies and nominal frequencies.  
As with range ionospheric and atmospheric delays 
account for propagation velocity
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Precision of phase measurements
• Nominally phase can be measured to 1% of 

wavelength (~2mm L1 and ~2.4 mm L2)
• Again effected by multipath, ionospheric delays 

(~30m), atmospheric delays (3-30m).
• Since phase is more precise than range, more effects 

need to be carefully accounted for with phase.
• Precise and consistent definition of time of events is 

one the most critical areas
• In general, phase can be treated like range 

measurement with unknown offset due to cycles and 
offsets of oscillator phases.
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GPS data
• Next set of plots will look at the GPS data
• Examples for one satellite over about 1 hour interval:

– Raw range data
– Raw phase data
– Differences between data
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Raw range data
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Raw phase data (Note: sign)
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L2-L1 range differences
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L2-L1 phase differences
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Zoomed L2-L1 phase
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Basic GPS analysis methods
• The issue that must be addressed in GPS processing 

if the unknown changes in the receiver and satellite 
clocks.

• For low precision positioning (tens of meters) the 
satellite clocks are assumed known and given by the 
broadcast ephemeris.
– Receiver clock can be estimated along with 3-D 

positions if 4 or more satellites are visible.
– Alternatively, the positions can be estimated from 

the difference between the measurements to a 
satellite and a reference satellite. 
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Basic positioning

• Diagram below a 
2-D example of 
effects of receiver 
clock.

• Notice: measured 
thick lines to not 
meet; thin lines 
after applying a 
constant offset, 
meet at one point.
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Precise positioning
• For better than tens of meters positioning, better information 

about satellite clocks is needed
• Differential GPS (DGPS) uses the pseudorange measurements 

from a known location to effectively estimate the error in the 
satellite clocks (and some other effects as well).

• By applying these clock corrections to  the pseudorange 
measurements at a site of unknown coordinates, the errors due 
to satellite clocks can be largely removed.

• The clock corrections can be transmitted by radio (RTCM model) 
for nearby stations (US Coast Guard system), or from satellite 
(Wide Area Augmentation system, WAIS).

• In WAIS, data from many known locations is averaged to reduce 
noise.
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Representation of accuracy
• In GPS applications (especially real-time applications 

in which positions are determined “instantaneously”), 
precision is represented by Dilution of Precision 
(DOP) values.

• DOPs are the ratio of the position precision to range 
noise precision.
– PDOP: Over all 3-D position precision
– HDOP: Horizontal position precision
– VDOP: Vertical position precision

• Example on next page is for mid-latitude site.
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Mid-Latitude DOP
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Summary of Today’s Class
• GPS measurements

– Basics of pseudorange measurements
– Phase measurements (allow millimeter level 

position with GPS and cm in real-time)
– Examine some GPS data.

• Positioning modes
• Dilution of precision numbers
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