
MITOCW | watch?v=ylQ5-9f5KIs

PROFESSOR: All right. Welcome back to 6.849. Today we are going over TreeMaker, folding

polyhedra, folding checkerboards, and Origamizer. Lots of stuff. And can't fit

everything in today, but we'll be doing more Treemaker in some sense from a more

practical perspective in the very next lecture video and next class, with a guest

lecture by Jason Ku.

So today we have a bunch of questions. We'll start with TreeMaker. So the first

question is, wow, you can make all these crazy things with the tree method. Are

they really uniaxial? And the answer is yes. And I think it's probably easiest to just

go through some examples.

These are all from Origami Design Secrets, this book by Robert Lang, which is on

the recommended reading list. And I think there's even an electronic copy available

through MIT Libraries. So you can read it online or there maybe one in the library.

There's two editions. These figures are from the first edition.

So here is a-- the goal is to design "Scorpion varileg." These are all Robert Lang

designs. You come up with this stick figure, your tree. TreeMaker makes this crease

pattern. You can also see the rivers here and the disks. And then you get this base.

And then it folds into that scorpion.

So while the scorpion doesn't look like it has a single axis-- scorpion, maybe.

There's kind of an axis down the center. But it's not just this axis. It branches, then it

branches again. You can make a tree and it's still uniaxial. So uniaxial refers to this

axis in the base. All the flaps are attached to that one spot.

So in this picture, it's vertical. Usually in the-- when we draw all the figures, we think

of it as the horizontal plane, or horizontal line. So we imagine this is the floor. And

then we have flaps attached to the floor. Something like this.

So in that sense, when you flatten this base, everything lies along this axis. Even

though, in terms of branching structure, you could have lots of branches. So that's

1



to clarify what uniaxial means. Maybe not the best term, but I have a few more

examples here.

This hat includes a color reversal. Some crazy stick figure. And you get your

pattern. Here's a somewhat simpler want. It makes a more three dimensional horse.

This Alamo Stallion. So you can go through, and for each of these, I've just reverse

engineered from this crease pattern what the stick figure must be. And you're going

to do this on PSET2, which will be released in a few minutes.

And so this uniaxial's to contrast from something, the kind of most famous non-

uniaxial or biaxial origami bases, with Montroll's Dog Base, which looks like this. So

it's very easy to turn this into all sorts of dogs. This is a wiener dog. But you have

kind of one axis here and one axis here. Which is different. It's not the same kind of

branching tree structure.

Of course, you can make a dog using uniaxial method as well, but it's kind of a fun

counter example of the things you might do. So that's uniaxial.

Next question is, do people use TreeMaker and/or Origamizer in practice? And the

short answer is no. I would say most origamists don't use software to design things.

But they use a lot of the ideas in their own designs.

So in particular, the tree method of origami design, which TreeMaker is

implementing, almost every advanced origami designer uses. Not everyone, but

most of the complicated-- most complex origami that you see uses the tree method

at least to get started. Origamizer is much newer, so it's not used as much. Most of

the cool designs-- I'll show you a bunch of both-- are by Tomohiro Tachi, who

invented Origamizer. But I think it's still evolving. And hopefully, these more

advanced techniques will catch on with time.

And by now, you've seen lots of examples of the tree method. I'll show a few more

from Robert Lang's website. This is a local delicacy. And these are all on

langorigami.com, on his website. And we'll see even more examples in the next

class. And Jason Ku is going to give an overview of various artists.

2



And in some cases, they publish crease patterns. Not always. This is not quite the

tree method. So this example was standard tree method. You've got disks and

rivers, which aren't drawn here. You get a crease pattern. This could be done

directly from TreeMaker. I don't know for sure whether it was.

This pattern is not done with TreeMaker because it's not regular disks. This is the

box pleating version of the tree method, which there's another question about. So

we'll talk about that more. But you see all the creases here are horizontal, vertical,

or diagonal, 45 degrees. That makes it a lot easier to fold, a lot easier to find

reference points. You see it falls nicely on a grid. But still, you get an arbitrary tree

structure.

I think I have another example. This one also-- well, this has 22 and 1/2 degree

folds. It's a little bit more general. Also very non-stick figure-like models, particularly.

It's obviously called the "Fiddler Crab." No, sorry. I have the wrong title here. I will fix

that.

I forget this guy's name, but if anyone remembers. He wrote about the division

between scientists and people who know literature as two different types of

intellectuals that know almost nothing about each other. At least in the early 1900s

when he was writing.

And one more example. This is based on a 60 degree grid. So all the creases, I

think, lie at 60 degrees to the axis, or horizontal. There might be some 30 degrees.

So I'll talk a little bit about this alternate version of the tree method that doesn't just

use arbitrary circles, but tries to stay on these nice grids.

Here's just one more example. Jason Ku is the designer of this model called "Pan."

and he'll be giving the guest lecture. So this is just one example. But tons and tons

of advanced origami artists use tree method of origami design. And you get some

pretty cool crease patterns from it.

But I think most people do it by hand, usually on a computer using some drawing

programs that can compute intersections and do things with high accuracy. And

3



then they draw these pictures, then they fold them. And then you get your base and

then you shape it into the model.

So next I want to show you some practical examples of So there's a bunch on

Tomohiro Tachi's Flickr site. This is one of the earliest. This is just making a

negative curvature surface that curves in both ways like a saddle, called a

hyperbolic paraboloid. We'll see more of those in the future. But this is folded from

one square of paper. And there's tabs on the backside that you don't see here.

Here he's making a kind of 3D bell curve. Here's a computer mouse. Apparently the

scroll wheel works fine. [LAUGHS] Doesn't support USB, though. Only Bluetooth.

We've got a nice mask. These are all-- you're given a 3D model, and you fold

exactly that 3D model.

This is a tetrapod. So here it sort of shows Tomohiro's background in architecture. If

you haven't seen tetrapods, they're used to hold back the ocean and things from--

or hold from erosion and things like that. So usually made out of concrete. But here

you can make them out of paper.

Here's a flat design. So here the mesh, the triangles were all in a plane. And of

course, you still get the tabs on the backside. But you make this very exact leaf. You

can get the triangulation edges exactly where you want them to express these veins

of the leaf.

Here's what it looks like to fold one of these in practice. It's not quite a square of

paper, but it could be a square. And this is actually folded at CSAIL. You might

recognize some of the furniture.

And so while Tomohiro's folding, he uses various devices-- paper clips and clips and

so on-- to hold it in shape. Because until it's completely collapsed, it kind of want to

open back up. So it's kind of like having a hundred hands at once. But when he's

done, he'll take all of them off, and you'll get-- so this, I think, was about 10 hours

and you get your bunny. Easy.

Or this is the one we did a little bit later, just last year. This is a laser cut sheet of

4



steel. And now, here we've cut out bigger holes so there aren't too many

accumulation of layers. But essentially the same design. Somewhat coarser mesh of

the bunny. And you have to wear gloves, otherwise you'll cut yourself.

So we're perforating the metal at the creases. And then also takes about eight

hours. A lot harder to fold steel. And in the end, you get your bunny.

So in principle, out of any sheet of material, you can make any 3D shape you want.

That's the exciting thing. So I think Origamizer is really powerful. Obviously, it's hard

to fold. You need to be pretty advanced. But there's a lot of potential for designing

very non-stick figure-like models.

So that was TreeMaker and Origamizer in practice. So next question is about this

box pleating, which is the horizontal, vertical, and 45 degree creases. And

TreeMaker, is there some theory for this? And indeed there is.

And we started working on it, me, Marty, and Rob Lang, I think during his first visit

here, which was probably 2004 or something. A long time ago. And the best writeup

of it currently is in Origami Design Secrets, especially Second Edition. So

It has a chapter on basic tree theory, a chapter on box pleating in general. This is

sort of classical box pleating. But then there's a chapter on mixing the two. Uniaxial

box pleating and polygon packing. These kind of go together.

So if you're interested in this stuff, you want to design something the way that the

experts do, check out Origami Design Secrets. Or go to an origami convention

where Rob was talking about this stuff.

We are working on this giant manuscript. It's currently called the Mathematics of

Origami Design, which is, in particular, trying to prove the tree method always

works. And we'll generalize to things like this. But it's not finished, so we don't have

a complete proof yet that it all works. Everything seems fine, but it's tedious to write

it all down. So still working on it.

But I thought I'd show you an example of box pleating uniaxial origami design from

5



Origami Design Secrets. So this is sort of typical tree method of origami design. If

you're not necessarily using TreeMaker, but you're doing it by hand, you think

about, OK. Suppose I want to make this kind of insect, this stick figure.

Maybe I realize, oh, it's kind of centrally symmetric, so I'd like to make the left half of

the paper same as the right half. You can also express that in the TreeMaker

software. And then you start thinking about where these leaves correspond to disks.

Then you've got to have the corresponding rivers in between them.

So you might start with this kind of layout, and then you try to blow it up until things

can't be expanded anymore and there's lots of touching. So that would be the usual

approach. Then from that, you could apply the tree method, get the crease pattern.

With the box pleated version, essentially, instead of disks, you have squares. And

instead of rivers, you have these orthogonal channels of constant width. And so I'll

just wave my hands and say that happens.

Now, you get these weird things-- you get these gaps. You tend to get more gaps in

this way. But in this case, instead of just having a square, you can extend it out to

be a rectangle. So these guys are actually going to fill in these holes like this.

And then from this, you can start constructing a crease pattern. So you start with

these ridge creases. And this is something like a generalization. It's actually

something like a straight skeleton, which we'll be covering in a couple of lectures for

a different purpose, where it was originally developed for origami purposes. But

these are just lots to bisectors. And you'll have to see the general version later.

And then you start putting in the hinge creases. These are these green lines. And

they're perpendicular to these. These blue creases are going to be the floor. And so

on, you fill it in. Eventually you get your complete crease pattern.

So in a nutshell, that's how it works. You tend to get tabs that are a constant width

like this. Constant height, I guess. And so, it's a general technique. It's a little bit

much to explain here, but read the book if you want to see it.

6



And I would say it's probably some of the most common. There's a lot of intuitive

ways to do it, and then a lot of the details are worked out in that book. But it's quite

common to design bases in this way, because it's just so much easier to fold them.

You don't have to construct really weird angles.

A lot cleaner. But a little bit less efficient, because instead of using a disk, which is

the minimum amount of paper you need to make a flap, you're using a square. So

you're wasting those little corners. But not that much more inefficient. Cool, so that

was that method.

Next question I have is about the triangulation algorithm, which I didn't even cover in

lecture. So this was you set up-- you have your piece of paper. And you assign each

leaf in this tree to some point in the piece of paper. And you satisfy the active path

condition so each of these distances measured on the paper should be greater than

or equal to the distance measured on the tree, which is the floor of the base.

Great. And so if you happen to have some equalities, you draw in active paths. But

what if you don't have any? Or you don't have enough? The tree method in its

original form only works when the active paths decompose the piece of paper into

convex polygons. This is what you'd like to have happen. Each of the faces here is a

convex polygon.

If that happens, great. You can use the universal molecule and you get your folding.

If it doesn't happen, you have to modify your tree a little bit. There are a couple

ways to do this in the TreeMaker.

You can modify these edge lengths and try to modify them as little as possible so

that things touch. But the easy way to prove that something is possible-- because

remember, if we add a little bit to the base, we get an extra flap. That doesn't really

hurt us. At the end, we can hide the flap. Just fold it against other flaps and just

pretend it wasn't there.

So as long as we can add flaps in order to make the active paths decompose into

convex polygons, we're happy. And in fact, what we prove is that you can keep

7



adding flaps until you get into triangles. And triangles are always convex. And so

they make us happy.

So we will end up adding a bunch of flaps in our tree in order to triangulate with

active paths. And then in each of these, we just fill in a rabbit ear molecule. So that's

the goal. Now let me tell you how the triangulation actually works.

It was originally described by Lang. It's also in the textbook for this class. I'll try to

give an abbreviated version here. It's a little bit technical, but here's the idea. So

suppose-- all right. So we've assigned some leaves. And suppose we have some

region that's not convex. It's not a triangle. Has more than three sides.

Now, some of these edges may come from active paths, and some of them may be

from the boundary of the paper. So maybe the paper is here. So this edge is not

active. It's just the boundary of this region because it's the boundary of the paper.

So there are two types of edges.

But there should be, I guess, at least one active edge. And there's at least four

edges total. So what I'm going to do is look at any of the active edges, and I'm going

to imagine-- OK. So that active edge, this is in the piece of paper. But now I'm going

to think about it in the tree.

So the tree looks like something. We don't really know what. Any active path here

corresponds to an active path in the tree of exactly the same length. So maybe it's

from this leaf to this leaf. So it corresponds to-- use a color. This guy corresponds to

this path. And the sum of those lengths should be equal to that length. It isn't,

obviously, but there's a scale factor in between here. Lambda.

OK. So here's what I'm going to do. I'm going to modify the tree by adding a new

leaf somewhere off of this path. OK, where? For convenience, let's assume that this

path length here is 1. Then I'm going to measure out some distance x here, which

will leave a different distance, 1 minus x, here.

And then I'm going to make this length, I guess, L. And I'm going to call this leaf L.

Capital L. OK. This is a modification to a tree. I can do it. I can do it for any value of

8



x between 0 and 1. And i can do it for any value of L greater or equal to 0.

So what I'd like to do is design the tree so that this point ends up in an interesting

place on the piece of paper. In fact, I claim that no matter where I draw L here,

capital L, as my desired place. Now, what I'd really like is for-- I should give these

guys names. This is called U, or say, in the notes, I call it V and W.

So here we have W and V. What I would like is for these two paths to also be active.

Meaning the lengths here match the lengths in the tree. I claim that no matter where

I put L in the plane, anywhere in the plane, I can choose x and choose L so that

these two lengths are exactly correct. Do you believe me?

Not really. How many people think this is obvious? Good. A couple maybe. Let me

give you a quick sketch. It's not that interesting, so I just want to do it very briefly. If

you let x be a free parameter, but fix l, little l, then what this corresponds to is, in

fact, an ellipse with V and W as foci of the ellipse. Because you have to hold the

sum of these lengths fixed if you fix-- if you let x vary, this length plus this length is

always going to be the same if you fix l.

And so this is called the major axis, the sum of these two lengths is going to be like

1 plus 2l. And so if I have a point, basically, there's some ellipse of the appropriate

size that passes through L. That will let me choose little l. And then as I vary x, I

walk around the ellipse. So I just choose the appropriate value of x that gets me the

desired point on the ellipse. That's it.

The point is, the set of all ellipses with these two foci spans the entire plane. So

wherever you want to put L, you can make those two paths active. OK, this is good,

because it makes a little triangle. But of course, if I just add an arbitrary triangle, not

very interesting.

The good thing is I'm free to put L wherever I want. I'd really like to put L say here

and draw active paths like that. Because then I'm kind of decomposing my polygon

into triangles. That's not always possible.

So let's just go through the cases. In all cases, we're going to simplify a polygon,
9



make it have fewer sides. And that's on the next page. So the claim is-- well, the L.

There's sort of three cases. Going to reorganize this a little bit.

One thing that would be nice is I can place L-- maybe I'll draw another version of

this. So I've got UV. I'll draw the active paths in red. So we know UV is active. We've

got L. If I could somehow place L so that it's active with two other points, two other

leaves. This is V and W. This is U and this is T.

If I can do this, and the region looks something like that, then I'm happy. I'm going

to put L there and add in these four edges. And essentially, if you look at any one of

these regions that remains, there's a triangle here. That's definitely OK. These

regions, each of them will have fewer edges than the original region.

That's pretty easy to prove, because you have-- Because you're connecting to

these four vertices, this region won't have this vertex or this vertex. So it has one

added vertex and two removed vertices at least, W and T. So this one will be

smaller. And this is symmetric for all of them.

OK. So this would be a good case. So what I'm going to do is try to move L around.

I'm going to start very close to VW and just start moving off the edge. Initially,

nothing else will be active because it's basically right on top of VW. But as I move

around, I might get another active path.

OK. Maybe this is Case 1A. Before we get there, Case 1 is you get LU active.

Suppose you just to get one additional active path. The other case is, nothing else

becomes active. So here's V, here's W. Here's L. Here's U. So this is active, active,

active, active.

OK, what I'm going to do in this situation is, if I want to keep LU active, I can actually

move L on a circle. As long as L stays on this circle, LU remains active. OK? So just

move it along the circle.

Now, there are two possibilities. It could be it becomes active with something else.

Then I'm done. Or it could be it doesn't, which means it will hit the boundary. So it

10



will hit a boundary point.

So Case 1A-- so this is Case 1. You can make something active. When you move

along the circle, either you make another thing active, or you won't and you hit the

boundary. Case 1B is you hit the boundary.

And then I claim you're also happy. So in that situation-- draw it one more time--

we've got L on the boundary. And we've got some path here, here, here, here.

These are all active. So here's L. OK. I claim again, each of these regions has fewer

vertices than before.

Should be pretty obvious. This one is emitting W and this was U. Yeah. It's emitting

W and it's emitting whatever's down here, if anything. Yeah, I think it's pretty

obvious.

You've got to check all the cases. There's a few details here. But it should be each

of these regions has strictly fewer vertices than it did before. And so you're making

progress. If You started with all faces having some number of edges, each time you

do one of these steps, you decrease it.

OK, the last case, Case 2, is you can't make anything active. This can happen, for

example, if you're in the corner of the piece of paper and you have an active path. I

guess that's a little less exciting. Maybe your piece of paper is this shape. Be a little

bit weirder. So this will work for any convex piece of paper.

So it's not quite a triangle. And you're moving L around here and you just can't get

another active path. You have no vertices around. This is W, this is U-- sorry, this is

V. And in this case, L can go anywhere here. It's free.

In that case, I'm going to put L on one of the vertices of the paper. So I get this

active and this active. And then I've decomposed that region into pieces by, this is

what we call a diagonal. We're adding a vertex to vertex edge in this polygon. And

that always decreases the number of sides in each of the subregions. So if I just

keep doing this, taking any region of size larger than three, I will eventually reduce

them all to have size three. So they'll all be triangles.

11



So that's the triangulation algorithm in a nutshell. You can look at the textbook if you

want to see it more detail, but it's pretty simple. This proves that something is

possible. I don't think TreeMaker actually implements this algorithm specifically, but

you can kind of do it by hand.

So I have a little example here. This is TreeMaker. I drew this really weird tree. We

call it a caterpillar tree because you would actually use it to make caterpillars. And if

you just plug this into TreeMaker with all the lengths unit, it will give you this error

message. I couldn't construct all the polygons because things weren't tight enough.

And if you look carefully-- it's a little hard to see these colors-- but the light green

edges, those are the active paths. And here-- so this was a triangle and it was

happy. If you look at this green polygon-- maybe actually I'll draw with the tablet. So

this thing is an active-- that's a region bounded by active paths. And probably the

top edge is not an active path. That's just a boundary.

But it's not convex. And so you're unhappy. And so I just kind of eyeball this and

say, OK. Well, probably I should add another leaf here that would maybe add a disk

that will probably fill that in. So you don't have to be super-precise. Here we had the

very carefully place the disk to make things touch.

But because TreeMaker's always just trying to blow things up and make them touch,

it's quite a bit easier in practice. You just say, OK. I will add an extra leaf here, like

that, to my tree. And then I hit Optimize, and boom, it works.

In this case, I was lucky. In general, I might get a nonconvex region. I'd guess

where to add another leaf, and it works. You can adjust. Did that leaf have to be that

bit, or could I get away with a smaller one? But eventually, you will get a base. And if

you want, you could carefully monitor this proof and actually always succeed. But in

practice, it's usually not that hard.

Questions about that? So that was the triangulation method in a nutshell. The next

question is about the universal molecule. And we might spend some more time on

this next class. But I thought we could actually look at this example, because it's got
12



a bunch of different universal molecules.

So I will continue to draw. So let me pick, let's say, this universal molecule here. It's

a quadrilateral. All right. So those are four active paths in this case. And it

corresponds to some tree. So I don't have handy here, but it's going to be a tree

with four edges. With four leaves, sorry.

Tree with four leaves is going to look something like this. This is a piece of the

bigger tree, which you recall looked something like this. And we added one

somewhere. But this particular quadrilateral is doing some particular subtree on four

leaves. In particular, there are four leaves here, correspond to four leaves here. I

don't know which ones. I don't really need to know. TreeMaker keeps track of it for

me.

And I happen to know that these four paths are active. Meaning the lengths in the

plane here match exactly the lengths as measured along the tree. So what I do to

make this work-- this is basically the floor of the molecule. Those four paths will all

lie on the ground level.

What I'm trying to do is slice higher and higher in the base to see what happens

when I slice. And if you think about it, as you move up here, in the plane this

corresponds to moving parallel to these edges. So I'm shrinking this polygon by

parallel offsets.

So let me draw one parallel offset. Approximately parallel. OK, after I shrink a little

bit, might look like that. An interesting moment in this case is here. Let me draw this

carefully. It should go-- this should go here. Ooh. Oops. I'm going to start over.

This is actually already drawn for us. It's this guy. OK, this is a parallel offset. And in

this case, something interesting happens, which is this path. So it turns out this

middle edge, in this case, becomes active. So what that means is, originally, if you

looked at these two points, these two leaves, they had the wrong length. OK?

So that's going to correspond to something like these two leaves. They're opposite

13



corners of the quad. And you measure the length along the tree, you get something.

And the claim was, in the plane, it was too big.

Now, as you do this parallel offset, as you shrink the polygon, at some point it will be

just the right length. This could happen. Doesn't have to happen. If it happens, you

have to stop. Because if you kept going, it would become too short. And we know

every length here must be greater than or equal to length over here.

So when it becomes equal, we have to stop, and we have to make this a crease.

Making it a crease basically says, ah, this is exactly the right length. I have to split

here. And where'd my chalk go? And I have to sort of grow now two different flaps

from that point. The crease sort of makes it horizontal.

And then we end up shrinking in two different parts. We shrink in this triangle, which

gives us a rabbit ear. And we shrink up there in that triangle. Gives us another

rabbit ear. So it will end up giving these angular bisectors.

In general, as you do the shrinking, you watch where the vertices go. Those are

your ridge creases. So this one went along an angular bisector. That one did as

well. But once we do this split operation, because of this newly active path, which we

also called a gusset in the universal molecule, then these vertices actually split and

go in two directions. One for this thing angular bisector and one for that angular

bisector.

So in general, for a universal molecule, there, are two things that can happen. You

can be shrinking your polygon and suddenly discover there's a newly active path.

And then you have to divide it into two polygons and start shrinking those

separately. Or vertices can disappear.

So it could be you're just shrinking, shrinking, shrinking merrily along the way. And

then suddenly, these two vertices collide with each other. So you get to ridge

creases here. In this case, you just treat those two vertices now as one. So you'll

start shrinking like this. And so these vertices will now start going that way.

So in general, as you're shrinking, these are the only two types of events that can

14



happen. Either two vertices merge, or you get a new diagonal here that becomes

active. When that happens, you just divide. Now, this will work for any convex

polygon and you get your molecule.

It's hard to just draw a picture of this without using a computer tool or really keeping

track of what you're doing. Because how do you tell when something becomes

active? You have to look at your tree. You have to measure lengths. It's tricky to do

without a computer tool. And that's why TreeMaker was made. But it can be done.

Probably even easier with physical paper if you know exactly what lengths you're

trying to match.

So that was a quick overview of how universal molecule works in more detail. Next, I

want to talk about a few different open problems. So one of them was-- these are

called gift wrapping problems.

So we have things like given a square, a unit square, let's say, what's the largest

regular tetrahedron you can wrap? That's still open. All these problems are still

open except for the squared to a cube which talked about in lecture. And I realize

equilateral triangle to tetrahedron. That's also really easy.

If you can do it without any paper wasted, just clearly optimal. But it would be very

cool to study these. I think these would make a good project or open problem for

the open problem session.

Folding a given rectangle with given aspect ratio into a cube. Also open. Pretty

much any version you can think of is open except the ones that we've already seen.

Also wanted to mention for checkerboards, a fun problem, kind of in this spirit, is,

what would be the best way to fold a two by two checkerboard? Even for a two by

two, we have no idea how to argue any kind of lower bound about how bad you

must do. That you can't just take a square and fold a two by two checkerboard of

the same size. Surely you can't do that. But we don't know how to prove that. So it

would be a nice target.

We obviously have upper bounds. We have constructions that make two by two
15



checkerboards. I think from a 3 by 3 grid, you can make a two by two checkerboard.

But is that optimal? We have no idea.

So a couple questions about the checkerboard folding. So we had this picture of

how you would take a square root of paper-- you start with a square paper. You fold

into this shape with these long slits. And then these guys fold over. And then there

are also tab sticking up here, which are not drawn. And they fall over and give you

the color reversal.

Question was, how do you actually build this thing? This does not look uniaxial. And

indeed, we do not use uniaxial techniques for this. We use a separate set of

gadgets which are kind of based on pleating. And this will actually be very similar to

something we see in a couple of lectures when we do box pleating to make cubes

and stuff.

But you just compose these gadgets. So this is kind of a general tab gadget. You

collapse this crease pattern, and do a couple more folds. And you end up with this

tab sticking out here, and you can flip it up or down.

And you see that it has these pleats running off to the side. This mountain valley,

mountain valley, and then valley mountain, valley mountain. And so those have to

go all the way through the paper. And they come into this construction, which

basically lets you make a big slit in the paper. Or you can also turn a corner.

And so you just prove that these gadgets compose. I mean, it's pretty that they

compose. You just have to analyze how much of the paper you're using. And it turns

out to be really good. That a short version. If you want to try it out, fold some

gadgets.

Fun project idea from you guys is, given an image, sample at low resolution, make it

black and white. And then come up with the crease pattern that would fold, by this

checkerboard technique, into exactly that two color pixel pattern. You could make all

sorts of useful things like Space Invaders and stuff like that.

16



You'd never want to fold them, I think-- although maybe with low enough resolution

you could fold them. But I think they'd be cool just as crease patterns by

themselves. You input a different pattern-- I'd like web applet. You change the pixel

pattern. And boom, it gives you the crease pattern. I think this would be a fun

project if you're into implementing things. It's essentially the algorithm we already

have, but it needs to be just written out in detail and coded up.

OK. Here's what it looks like to fold an eight by eight checkerboard with this method.

These are all by Robert Lang. So a lot of precreasing along this huge grid. I thinks

it's roughly 48 by 48. And then some tape to hold things shut, mostly for

photographing. And to collapse, now we're down by a factor of two or so. Now you

can see the slits in one direction.

I think the particular method being used here only has slits in one direction. Oh, no.

Here we've got slits in the vertical direction as well. You could see the tabs sticking

out here. They're going to fall down. There's some more of the tabs. Start folding

over, and boom, you've got your eight by eight checkerboard.

Robert Lang says, wow. That was not one of the easier things I've done. And this is

folded from a 48 by 42 checkerboard. In principle, this method can go down to 36

plus epsilon by 36 plus epsilon, but it gets messier crease pattern-wise.

And 36 would be better than the best known eight by eight board if you want

seamless. Notice these are seamless squares. No crease lines through them. This

one's not necessarily-- this is not better than known techniques, but it follows our

algorithm. And that's what the crease pattern looks like. Cool.

Next we go to Origamizer. So as I mentioned in lecture, there's two versions of

Origamizer. There's the version that's implemented in the software, and there's a

version that we're proving is always correct. These are different because the

version in the software doesn't always work.

And it remains that way because the software version is more practical. And also,

the theoretical version is still a moving target. We change it every few weeks to fix

17



part of the proof. It's almost done, but it's been almost done for a couple of years.

So we're still working on it. Tomohiro was just visiting a couple weeks ago, as I

mentioned.

And we're closing in. I actually have with me the current draft of the paper. And it's

not nearly as long as this one with the tree method, but it's still growing and working

up, making sure all the details check out.

And the theoretical version is kind of complicated, so I thought, in particular, given

this question, we'll talk about the software version because it's actually a lot simpler.

Only catch is, it doesn't always work. And it's described in this paper if you want to

read it, by Tomohiro, about Origamizer 2010. And I have a few figures from that

paper.

Well, this is still from Tomohiro's Flickr. So we had this example where you wanted

to fold this hyperbolic paraboloid. And here's what the crease pattern looks like. It's

actually pretty simple. You've got these white polygons, which are polygons from the

surface. That's what you need to fold.

And the goal is to lay them out on the piece of paper-- this square is the piece of

paper-- so that I can-- for example, I need to bring this polygon to touch this

polygon. This edge has to touch this edge. Wouldn't it be great if I could just fold the

bisector of those two edges, and this would come right onto here?

Sometimes that happens, but for example, if this polygon is way down here, that

won't happen. It will fold over and they won't align. There's two issues. First you

have to get the angles to match. And also there's this vertical shifting.

If you place the polygons in the plane in a good way, this will work. You always get

alignment. And what Origamizer implements is nonconvex optimization, a constraint

projection, to make all of the edges work. And sometimes that's possible. It's

actually possible fairly often. And that's when the Origamizer software works.

If it's not possible, you're screwed. This particular method won't work. But when it's

possible, things are great. So essentially, you have to bring the edges together.

18



Then you also have to bring the vertices together. Like these four vertices come

together to a point.

And so you get two kinds of gadgets, which are the vertex tucking molecule to bring

vertices together, and edge tucking molecule to bring two edges together. Edge

tucking molecule is a single crease. Trivial in this construction.

Vertex tucking molecule is complicated. And in general, what happens is for these

points, we construct what's called a Voronoi diagram, which is essentially, for each

of these points, if you grow a disk at equal speeds around all of them, and when the

disks meet, you stop them. So then these two disks will meet along this

perpendicular bisector. And they'll keep growing until they kind of all die out. And

you'll get this tree structure, in general.

Those are your main creases. You follow that structure and you do some stuff.

Essentially, what happens when you fold along this Voronoi diagram, you also have

to add in these creases from the Voronoi diagram to the points. When you do that,

you'll get a kind of mushrooming structure that has too much material.

If you set it up right, all the angles of paper that you have are larger than what you

need in the folded state, which would look like this. And so what you do are lots of

little pleats to reduce the angle. . If you've got a big angle of paper, you can do a

mountain and a valley and make it a smaller angle. And that's what all these

creases are doing. You've got these pleats to reduce the angle here, reduce the

amount of material here and here in order to match the 3D structure.

So overall, what the algorithm does is first, given the surface, it constructs a suitable

3D structure of where to put all the extra tabs. Then it designs things so that the

angles are bigger here than what they need to be there. This is, again, a constraint

projection. Also constrains these edges to meet up perfectly.

And then it just applies all these crimps-- it's easier in a computer than to see it

here-- to make all the angles correct to match the 3D model. Yeah, question?

AUDIENCE: So on the sheet metal one that you showed, do you just cut out the vertex shrinking
19



[INAUDIBLE]?

PROFESSOR: Right. So for the sheet metal bunny, we just cut out these polygons. Because

otherwise, it's a mess and you get lots of layers. And the point was to make it of one

sheet of material, but not necessarily a square. So if you have really thick material,

recommend cutting those out.

And we were laser cutting to score the lines anyway, so why not cut out some holes

as well. Yeah. So that way, you just have edge tucking molecules, which are really

easy. Mountain, valley, mountain. And so it actually is pretty practical to fold these

things out of generalized sheets with holes.

So the non-software version of Origamizer works the same way, except it does the

full generality of constructing this tuck proxy, where the tabs should go. And that can

get very messy in general. It's just tedious to explain. There are all these crazy

spherical diagrams that you saw in lecture. But it's not that exciting.

The more interesting part is that the edge tucking molecules can't just be a single

crease anymore. They have to, in general, kind of follow some path to get to where

they need to go. But it's similar. You just do a bunch of different folds. You can

sweep them one way or the other in order to navigate this edge to be where it

needs to be.

So again you place the faces in the plane. In the mathematical version, you can

place them anywhere you want. It doesn't matter. And then you have to shrink them

until they're small enough that things work. Then you route these paths to get from

each edge to each corresponding edge.

The edge tucking molecules are fairly straightforward. The vertex tucking molecules

become even messier. We still use a Voronoi diagram in the end. It's just there's a

lot more points. Here we're just using the corners of the triangles as the source

points for growing stuff. In the general case, you have to add lots of points in the

middle too.

20



But it turns out not to matter. You could throw in tons of points. You could always

fold a Voronoi diagram. You get this mushroomy thing. And then you can just fold

away the parts you don't need. You have to make them really small in order to

make these tabs not too big, because if the tabs are too big, they collide with each

other.

That already happened in the software version. Even in the software version, this

might not work because this tab may be huge. But you can-- in this case, you just

add a few more and make this pleat up and down, and you'll avoid collision.

So that was a quick, but a little bit more clear, overview of Origamizer and how it

works. Any more questions? Cool. That's it for today.

21


