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Quadratic Factors 

Our next example is one step more complicated. The degree of the numerator is 
still less than the degree of the denominator, but the denominator Q will have 
a quadratic factor: 

2x
. 

(x − 1)(x2 + 1) 

Notice that there’s nothing more you can do to factor the denominator.1 

The set-up for this example looks like: 

x2 A Bx + C 
= + . 

(x − 1)(x2 + 1) x − 1 x2 + 1 

The difference is that the numerator corresponding to the factor (x2 + 1) is 
linear, not constant; in general it will be a polynomial with degree one less than 
the degree of the numerator. 

We can still use the cover-up method to solve for A: 

x2 A Bx + C 
�

��
= 

x −��1
+ 
�

����(x��−��1)(x2 + 1) ���� x2 + 1 

12 

= A 
12 + 1 

1 
A = 

2 

It turns out that the best way to solve for B and C is the “slow way”; to 
clear the denominators completely by multiplying both sides by (x − 1)(x2 + 1). 

x2	 A Bx + C 
(x − 1)(x2 + 1) 

((x − 1)(x 2 + 1)) = 
x − 1

+ 
x2 + 1 

((x − 1)(x 2 + 1)) 

x 2 = A(x 2 + 1) + (Bx + C)(x − 1) 

x 2 = Ax2 + A + Bx2 + Cx − Bx − C 

x 2 = (A + B)x 2 + (C − B)x + (A − C) 

The coefficient of x2 on the left hand side is 1. On the right hand side, the 
coefficient of x2 is A + B. We know that A = 1 , so we get:2 

1 =	 A + B 
1 

1 = + B 
2 
1 

B = 
2 

1If you use complex numbers you can further factor the denominator and again use the 
cover-up method; in fact, this method was originally intended to be used with complex num­
bers. This technique was first used by Heaviside in his work with Laplace transforms and 
inversion of differential equations, but it also turns out to be very useful for integration. 
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The constant term on the left hand side is 0. On the right hand side the 
constant term is A − C = 2

1 − C. We conclude that: 

1 
C = . 

2 

Question: Why didn’t you use the coefficient of x1? 
Answer: It turns out that I didn’t need it. From experience, I know that 

the highest and lowest degree terms of the product will be the easiest terms 
to work with. I avoid those when possible because they usually involve more 
arithmetic. 

Question: Could you just set x = 0? 
Answer: Absolutely. That’s equivalent to equating the coefficients of the 

constant term. “Plugging in numbers” is an alternate method of solving these 
equations, but you still want to avoid plugging in the same number twice. 

Question: What if we had x3 + 1 in place of x2 + 1? 
Answer: If there’s an x3 + 1 in the denominator we haven’t fully factored 

the denominator; we’re back to step 1. This method of simplifying rational 
expressions doesn’t work if we don’t factor the denominator in the first step. 
Steps 1 and 2 would become: 

2 2x x
= 

(x − 1)(x3 + 1) (x − 1)(x + 1)(x2 − x + 1) 
A B Cx + D 

= + + 
x − 1 x + 1 x2 − x + 1 

Question: If the degree of the numerator equals the degree of the denomi­
nator, none of this works? 

Answer: It definitely doesn’t work. We’re going to have to do something 
totally different to handle that case. 

Remember that the point of all this work was to make it possible to compute 
an integral: 

x2 A Bx + C 
dx = + dx 

(x − 1)(x2 + 1) x − 1 x2 + 1
� � 1 1 1 �

x + 

= 2 + 2 2 dx 
x − 1 x2 + 1 � 1 � 1 � 1 x 

= 2 dx + 2 dx + 2 dx 
x − 1 x2 + 1 x2 + 1 

We’ve split the integral of the rational expression into three simpler integrals. 
The first is easy to solve by substituting u = x − 1, the second can be solved by 
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“advanced guessing” or by substituting v = x2 + 1. The last one can be solved

1


by trigonometric substitution or by remembering the antiderivative of . 
x2 + 1 

x2 1 1 1

(x − 1)(x2 + 1) 

dx = 
2
ln |x − 1| + 

4 
ln(x 2 + 1) + 

2
tan−1 x + c. 
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