
Quasi-Newton optimization:
Origin of the BFGS update

Steven G. Johnson, notes for 18.335 at MIT

April 25, 2019

Abstract
In a typical optimization setting we are provided with an objective

function f(x) and its gradient ∇f only. However, as these are evalu-
ated for many different points x we can infer something about the second
derivative (“Hessian”) by watching how ∇f changes, and by incorporat-
ing that information into our optimization algorithm we can accelerate
convergence. This approach leads to “quasi-Newton” or “variable-metric”
methods, so-called because they approximate an exact Newton step for
∇f = 0. The most widely used method to approximate the Hessian is
a BFGS update, and in these notes we survey the basic ideas underlying
this important algorithm.

1 Newton steps and backtracking
Suppose that we are trying to solve

min
x∈Rn

f(x)

and we are supplied a method to efficiently compute both f(x) and ∇f (e.g. by
an adjoint method).

On step k of optimization, let xk be our current iterate, and let gk = ∇f |xk .
If we had the second derivative “Hessian” matrix Hk as well (Hk

ij =
∂f

∂xi∂xj

∣∣∣
xk
), then we could try to make progress via second-order (quadratic)

Taylor expansion

f(xk + δ) ≈ f(xk) + δT gk +
1

2
δTHkδ = q(δ).

Near a local minimum, H is positive-definite, and the minimum of q(δ) is

δk = −(Hk)−1gk.

In fact, this is exactly a Newton step in finding a root of ∇f = 0, where we
approximate the gradient near x by a first-order Taylor expansion

∇f |x+δ ≈ g
k +Hkδ.

1

However, we might run into a problem: the Newton step δ might be so large
that our Taylor expansion is not accurate, and f(xk + δ) might actually get
worse. There are a couple of common approaches to fix this:

1. Trust region: minimize a q(δ) only for δ sufficiently small, i.e. in a
“trust region.” For example, a common choice is a spherical trust region
‖δ‖2 < rk for some radius rk, in which case there is a nice result: strong
duality holds, and we can optimize a convex dual problem.1 If the resulting
step is not “acceptable” (see below), we can change the trust-region radius
and try again.

2. Line search: We can minimize f(xk + αδk) over α ∈ R, i.e. along the
direction of the Newton step δk. Usually minimizing this exactly is more
trouble than it is worth just to take a single optimization step, so it is
common to do an inexact line search: try different α until the result is
“acceptable” (see below).

3. Backtracking: Instead of exact line search, we try f(xk + αδk) for α =
1, τ, τ2, τ3, . . . where 0 < τ < 1 is some parameter (e.g. τ = 0.5), until the
result is “acceptable” (see below).

For both a trust region and backtracking line search we have to decide whether
a given step δ is acceptable. Naively, we can simply check whether f(xk + δ) <
f(xk), but in practice it turns out that we want to impose stronger conditions
— we only want to take steps δ where our quadratic approximation q(δ) is
reasonably accurate. In practice, we typically impose one or both of the Wolfe
conditions on the step δ:

1. f(xk + δ) ≤ f(xk) + c1δ
T gk where 0 < c1 < 1, typically c1 = 10−4 : f

must decrease at least proportional to the prediction of the gradient gk.

2. |δT gk+1| ≤ c2|δT gk|, where gk+1 = ∇f |xk+δ and 0 < c2 < 1, e.g. c2 = 0.9:
the derivative δT∇f along the search direction must decrease sufficiently.
(Note that for an exact line search we will have gk+1 = 0.) This condition
helps prevent trust-region or inexact line-search methods from taking steps
δ that are too small, and it also leads to a nice property of BFGS updates
below.

2 Quasi-Newton/Variable-metric methods
The problem with Newton steps is that the exact Hessian is hard to come by
when n is large. Even with adjoint methods, evaluating H exactly typically
costs at least n times the cost of evaluating f once (it correspond to taking
the gradient n times: one more gradient for each component of ∇f). When n
is really large, just storing the H matrix (n2 numbers) might be impractical.

1This is called the “trust region problem,” and is discussed in e.g. Boyd & Vandenberghe
section 5.2.

2

Instead, “quasi” Newton methods (also called “variable-metric” methods) apply
the same Newton steps above but use an approximate Hessian Hk, often a
low-rank approximation (which can be stored and applied efficiently). In fact,
since what is needed for the Newton step is (Hk)−1, usually one stores a low-
rank approximate inverse Hessian. To obtain this, we want to iteratively
construct our approximateHk+1 (or (Hk+1)−1) given only the gradient (first
derivative) of f . Some desired properties of Hk are:

1. For a convex quadratic f(x), Hk should approach the exact Hessian as
k →∞ (i.e., as we apply our iterative update for many points and many
gradient evaluations, approaching the minimum). In practice, what can
typically be proved [6, 5, 3] is that for a convex quadratic f(x), the quasi-
Newton method gives the exact minimum and the exact Hessian in n steps
(in exact arithmetic).

2. Secant condition:

gk+1 − gk︸ ︷︷ ︸
γ

= Hk+1 (xk+1 − xk)︸ ︷︷ ︸
δ

.

This condition arises because it would be true of the exact Hessian for a
quadratic f (see the ∇f |x+δ Taylor expansion above). Equivalently, Hk

must at least predict the change in the gradient on the k-th step.

3. Real-symmetric positive-definite. This makes our q(n) function convex
and δk = −(Hk)−1gk is in the “downhill” direction from xk.

4. Hk should “remember” as much information from previous steps (i.e. the
previous gradient evaluations) as possible. (We don’t want to impose the
secant conditions on all steps simultaneously, however, because this could
quickly become impossible: f may not be exactly quadratic.)

The last criterion is rather vague and could lead to many possible quasi-Newton
algorithms. However, it turns out that an extremely easy and powerful approach
to “remembing” information is to simply minimize the change in Hk: we
minimize ‖Hk+1 −Hk‖ in some norm, or alternatively minimize ‖(Hk+1)−1 −
(Hk)−1‖. In the appropriate choice of norm, the latter leads to the famous
“BFGS” update, which has lots of nice properties.

3 BFGS updates
This update, named for Broyden [1], Fletcher [2], Goldfarb [3], and Shanno [4],
who wrote four separate papers that developed the approach in 1970, is obtained
by solving

min
H∈Rn×n

‖H−1 − (Hk)−1‖W

subject to H−1γ = δ and HT = H

3

That is, we minimize the change in H−1 subject to the second condition and re-
quire that it be real-symmetric (it will turn out that we get positive-definiteness
“for free” below). Here, ‖ · · · ‖W is a weighted Frobenius norm

‖A‖2W =
1

2
tr
[
WAWAT

]
=

1

2
‖MAMT ‖2F =

1

2
tr
[
MAMTMATMT

]
whereW = MTM is a positive-definite “weight” matrix to be chosen later (recall
the identity trAB = trBA). If we let E = H−1 − (Hk)−1, require that the
previous iterate Hk be symmetric, then this optimization problem equivalently
becomes

min
E∈Rn×n

‖E‖2W

subject to Ey = r and ET = E

where y = γ and r = δ−(Hk)−1γ.2 This optimization problem is, in fact, aQP:
we are minimizing a convex quadratic objective subject to affine constraints. In
consequence, strong duality holds and we can instead solve the Lagrange dual
problem. Equivalently, we can solve the KKT conditions. It turns out that this
leads to a very nice formula for the update E if we make the right choice of
weight matrix W .

Let’s apply duality, following Greenstadt [7] and Goldfarb [3]. We define
Lagrange multipliers λ ∈ Rn for the Ey − r = 0 constraint and ΓT ∈ Rn×n for
the E − ET = 0 constraint, and obtain the Lagrangian

L(E, λ,Γ) = tr

[
1

2
WEWET + (Ey − r)λT + Γ(E − ET)

]
.

Here, note that tr
[
(Ey − r)λT

]
= tr

[
λT (Ey − r)

]
= λT (Ey − r) is just the

ordinary sum of n Lagrange multipliers λi times n constraints, but by re-ordering
it into a rank-1 matrix we were able to combine it with the ‖E‖2W trace. And
tr
[
Γ(E − ET)

]
=
∑
i,j Γji(E − ET)ji =

∑
i,j(Γ

T)ij(E − ET)ij is a “Frobenius
inner product” of the n2 Lagrange multipliers (ΓT)ij with the n2 constraints
from ET = E. Note that

∇B tr(BC) = ∇B
∑
ij

BijCji = CT ,

where ∇B denotes the matrix of partial derivatives ∂ tr(BC)
∂Bij

= Cji, and similarly
∇B tr(BTC) = C. We can now solve the KKT conditions

∇EL = 0 = WEW + λyT + ΓT − Γ,

Ey − r = 0,

ET − E = 0.

2If alternatively we were minimizing ‖H −Hk‖W , we would get exactly the same form of
minimization problem with E = H−Hk, y = δ, and r = γ−Hkδ. This leads to an alternative
quasi-Newton method, called the Davidon–Fletcher–Powell (DFP) method, that seems not to
perform quite as well in practice. Intuitively, since H−1 is the quantity that appears in the
Newton step, it is not too surprising that it is better to minimize the change in H−1 rather
than the change in H.

4

subject to the constraints Ey = r and ET = E. The first equation gives

E = −W−1
(
λyT + ΓT − Γ

)
W−1.

The requirement that E = ET then means that
(
λyT + ΓT − Γ

)
=
(
λyT + ΓT − Γ

)T ,
or equivalently

ΓT − Γ =
1

2

(
yλT − λyT

)
and hence

E = −1

2
W−1

(
yλT + λyT

)
W−1.

Finally, the condition Ey = r now implies

yλTW−1y + λ
(
yTW−1y

)
= −2Wr.

Since the (· · ·) term is a scalar, we can solve for

λ = −2Wr + yλTW−1y

yTW−1y
.

At first glance, this doesn’t seem immediately helpful since there is a λT on the
right hand side. But if we multiply both sides by yTW−1 and transpose, we can
solve for the unknown scalar λTW−1y:

λTW−1y = −
2rT y + yTW−1y

(
λTW−1y

)
yTW−1y

=⇒ λTW−1y = − rT y

yTW−1y
.

Plugging this back into λ = · · · , we get

λ = −
2Wr +− yrT y

yTW−1y

yTW−1y
=

yyT r

(yTW−1y)
2 −

2Wr

yTW−1y
.

Finally, we can substitute this into our E equation to obtain

E =
1

yTW−1y

[
ryTW−1 +W−1yrT − yT r

yTW−1y
W−1yyTW−1

]
.

This looks messy, but it is actually quite nice: a sum of rank-1 updates to the
inverse Hessian! But we have one trick left up our sleeve: we haven’t chosen our
weight W yet! Different choices of W lead to different quasi-Newton methods,
but it is useful to note that E only involves W via the combination W−1y.

To get an E that turns out to have the especially nice property of preserving
positive-definiteness (if Hk is definite then Hk+1 is also, as we discuss below),
is to choose some W so that W−1y = δ. For example, we can choose W−1 =
(Hk+1)−1 = E+(Hk)−1.3 We then obtain, after a bit more algebra, the famous

3This may seem a bit circular: we choose W based on the result of the optimization. One
way to think of it is that if you choose W based on the E = · · · formula, then hold W fix and
minimize ‖E‖W in our QP, you recover the same W .

5

BFGS update:

(Hk+1)−1 = (Hk)−1 − 1

γT δ

[
(Hk)−1γδT + δγT (Hk)−1 −

(
1 +

γT (Hk)−1γ

γT δ

)
δδT

]
.

This may look a little messy. Equivalently, via the Sherman–Morrison formula,4
we can derive (after a bunch more algebra) the corresponding update of Hk:

Hk+1 = Hk +
γγT

γT δ
− HkδδTHk

δTHkδ
,

which is easier to analyze, even though in practice it is H−1 that we compute
and store.

3.1 Positive-definiteness
A key property of the choice of weight W in the BFGS update is that it allows
us to ensure positive-definiteness of Hk+1 assuming Hk is definite. (Typically
the algorithm starts with H0 = I or a similar diagonal positive-definite matrix.)
We simply need to check that xTHk+1x > 0 for any x 6= 0:

xTHk+1x = xTHkx− (δTHkx)2

δTHkδ
+

(xT γ)2

γT δ

=
(xTHkx)(δTHkδ)− (δTHkx)2

δTHkδ︸ ︷︷ ︸
≥0 by Cauchy–Schwarz

+
(xT γ)2

γT δ︸ ︷︷ ︸
>0 if γT δ>0

.

The first term is ≥ 0 by the Cauchy-Schwarz inequality: for any inner product
〈x, y〉, it is always true that 〈x, x〉〈δ, δ〉 ≥ |〈x, y〉|2, and in this case because Hk

is positive-definite we have an inner product 〈x, y〉 = xTHky.
The second term is clearly > 0 whenever γT δ = δT γ = δT gk+1 − δT gk > 0,

but why should this be? If we did an exact line search, then δT gk+1 = 0,
and −δT gk = (xk+1 − xk)T (−gk) > 0 because −gk is the “downhill” direction
and xk+1 must be “downhill” from xk. If we did an inexact line search, but
we imposed the second Wolfe condition |δT gk+1| < |δT gk|, then we still have
δT gk+1 − δT gk > 0 (the second term is positive and the first term can’t be a
larger negative magnitude). If we didn’t impose the second Wolfe condition and
happened to do a step where δT γ . 0, then we can just skip the update: let
Hk+1 = Hk: violating the second Wolfe condition generally means that we took
too small a step, and we want to keep going in the same direction.

4The Sherman–Morrison formula (A+ uvT)−1 = A−1 − A−1uvTA−1

1+vTA−1u
shows that a rank-1

update of A corresponds to a rank-1 update of A−1 and vice-versa.

6

4 Low-storage quasi-Newton (L-BFGS)

Applying the BFGS update directly requires Θ(n2) storage for (Hk)−1 and
Θ(n2) work on each step to updateHk+1. This is fine for n up to a few thousand,
but for truly large-scale optimization problems it is prohibitive. Fortunately, the
fact that BFGS is made of rank-1 updates (adding rank-1 matrices uvT to Hk

or its inverse), there is a solution: store a set of rank-1 updates, not the matrix.
That is, represent

(Hk)−1 ≈ H0 +
m∑
j=1

uj(vj)T ,

where we keep the m most recent rank-1 updates for some m (typically 10 .
m ≤ 100). This is known as an L-BFGS method, where “L” stands for “low-
storage”, and was introduced by Nocedal in 1980 [8].

With this representation of (Hk)−1, assuming H0 is sparse (typically diag-
onal, e.g. I), the storage cost is Θ(mn) for the {uj , vj} vectors, the cost to
multiply (Hk)−1gk for the quasi-Newton step is also Θ(mn), where as usual we
compute uvT g by u(vT g) in Θ(n) operations, and the cost of updating to Hk+1

is Θ(mn) for the (Hk)−1γ product plus Θ(n) other operations.
Although for m � n this procedure can no longer converge to the exact

Hessian, in practice L-BFGS can greatly accelerate optimization (compared to
steepest-descent and other first-order methods with “no memory”) in many cases,
especially optimization to high accuracy, in much the same way as an approxi-
mate Krylov method like restarted GMRES or nonlinear conjugate-gradient.

5 BFGS and constrained optimization
For nonlinearly constrained optimization (min f0(x) subject to fi(x) ≤ 0), the
most common utilization of BFGS has been for sequential quadratic program-
ming (SQP): approximate the optimization problem by a sequence of convex QP
(convex quadratic objective + affine constraints), typically solved in a trust re-
gion to give each optimization step. BFGS is then used to obtain the quadratic
term in the QP, but there are a variety of ways to do this. The simplest is
to apply BFGS to f0 , but in that case only linear approximations are used
for the constraints fi. Alternatively, BFGS can be applied to some form of
Lagrangian or “augmented” Lagrangian (= Lagrangian + penalties for violated
constraints) [9].

References
[1] C. Broyden, “The convergence of a class of double-rank minimization algo-

rithms,” J. Inst. Math. Appl. 6, pp. 76–90 (1970).

[2] R. Fletcher, “A new approach to variable-metric algorithms,” Computer J.
13, pp. 317–322 (1970).

7

[3] D. Goldfarb, “A family of variable-metric methods derived by variational
means,” Math. Comp. 24, pp. 23–26 (1970).

[4] D. Shanno, “Conditioning of quasi-Newton methods for function minimiza-
tion,” Math. Comp. 24, pp. 647–656 (1970).

[5] R. Fletcher and M. J. D. Powell, “A rapidly convergent descent method for
minimization,” Comput. J. 6, pp. 163–168 (1963).

[6] C. G. Broyden, “Quasi-Newton methods and their application to function
minimisation,” Math. Comp. 21, pp. 368–381 (1967).

[7] J. Greenstadt, “Variations on variable metric methods,” Math. Comp. 24,
pp. 1–22 (1970).

[8] R. H. Byrd, J. Nocedal, R. B. Schnabel, “Representations of quasi-Newton
matrices and their use in limited memory methods,” Math. Prog. 63, pp.
129–156 (1994).

[9] R. H. Byrd, R. A. Tapia, Y. Zhang, “An SQP augmented Lagrangian BFGS
algorithm for constrained optimization,” SIAM J. Optim. 2, pp. 210–241
(1992).

8

MIT OpenCourseWare
https://ocw.mit.edu

18.335J Introduction to Numerical Methods
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

