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Fast Fourier transforms (FFTS)(N log N) algorithms (kq, k1), so thatt = Naokq + k2. Substituted into the DFT
to compute a discrete Fourier transform (DFT) of si¢e above, this gives:
have been called one of the ten most important algorithms
of the 20th century. They are what make Fourier transformgyN2kl+k2 -
practical on a computer, and Fourier transforms (which ex- Nap—1
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everything from solving partial differential equations to dig--—
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ital signal processing (e.g. MP3 compression) to multiply- 3)
ing large numbers (for computingto 10'2 decimal places).

Although the applications are important and numerous, ifiare we have used the fact that2™m2k1 — 1 (for any

FFT algorithms themselvesreveal a surprisingly .rich VariQW[egeran andk;). Here, the outer sum is exactly a length-
of mathematics the_lt has peen t_he subject .of active rese%beT of the(- - - ) terms, one for each value bf; and the
for 40+ years, and into wh_|ch_th|s lecture W|Il_attempt to dipyner sum in[- -] is a lengthAV, DFT, one for each value
your toes. The DFT and its inverse are defined by the f%lfnl. The phase in th¢- - - } is called the “widdle factor”
lowing relation betweedV inputsz,, andN outputsyy, (@ll - (honest). Assuming that has small (bounded) prime fac-
complex numbers): tors, this algorithm require® (N log N') operations when
N—1 carried out recursively — the key savings coming from the
DFT(zn): i = Z xne—2]\',ink’ (1) fact that we have exposed a repeated calculation|-thé
— DFTs need only be carried oamce for all v, outputs.
For a givenN, there are many choices of factorizations
1 N i (e.g.12 = 3-4 and4- 3 give a different sequence of compu-
inverse DFTyx): on = > yke™ ™ (2) tations). Moreover, the transposition from input to output
k=0 implies a data rearrangement process that can be accom-
wherei = /1, recalling Euler's identity thae¢ — p!ished in many ways. As a resglt, many different strate-
cos ¢+i sin ¢. Each of theV DFT outputsk = 0,--- , N— 9ies for evaluating the C-T algorithm have been proposed
1 is the sum ofN terms, so evaluating this formula directiy&ach with its own name), and the optimal approach is still
requiresO(N2) operations. The trick is to rearrange this@ matter of active research. Commonly, eithéror N> is
computation to expose redundant calculations that we éfmall (bounded) constant factor, called taeix, and the
factor out. approach is called decimation in time (DIT) fof; = radix
The most important FFT algorithm is called the Coolef” frequency (DIF) forN, = radix. Textbook examples
Tukey (C-T) algorithm, after the two authors who pop'® typlcally radix-2 DIT (d|V|d|_ngrn_|nto two mte_rleaved
larized it in 1965 (unknowingly re-inventing an algorithnji@lves with each step), but serious implementations employ
known to Gauss in 1805). It works for ampmposite size More sophisticated strategies.
N = NN, by re-expressing the DFT of siz¥ in terms There are many other FFT algorithms and there are also
of smaller DFTSs of sizéV; and N, (which are themselvesmany differentways to view theamealgorithms. One fruit-
broken down, recursively, into smaller DETs until the primiéll way is to view the DFT in terms of operations paly-
factors are reached). Effectively, C-T expresses the BemMials. In particular, define a polynomial(z) by
ray x,, of length N as a “two-dimensional” array of size

N; x Ns indexed by(nl,ng), so thatn = Nins + nq ) . = n (4)
(wheren; ; = 0,---,N; 5 — 1). Similarly, the output is w(2) = Z Tn2
expressed as tmansposed 2d array,N» x N7, indexed by =0
1Read ‘O(N?)" as “roughly proportional, for larg&v.” e.g. 15N 2 + Then
24N is O(N?). (Technically, | should really sa@(N?), but I'm not o o
going to get that formal.) yr =x(e” N F)=2(2) mod (z—e ), (5)



where z(z) mod u(z) (xz(z) “modulo” w(z)) means g, and rewrite the DFT as
the remainder of dividing x(z) by u(z). Since u(z)
r.nod u(z) =0, taklngx(z_) mod u(z) is equllvalenitzoﬁsket- Yo = Z . @
tingu(z) = 0, which in this case means setting= e~ '~ *.
The DFT corresponds to computingz) mod (z —

~% k) forallk = 0. — 1, which would takeD(N?) B . Nz_f gPrN-1-a ®)
operatlons if done d|rectly The key observation, from a ~ 7k#0 = Yg¥ 170 = 0 - “N Lor>
=

polynomial viewpoint, is that we can do this modulo opera-
tion recursively by combining the factors(z — e —2mig ). In where (8) |sNe>1(actIy the cyclic convolution af, = zg»
particular, it is easy to show tha{z) mod u(z) = [z(z) withb, = w¥ . This convolution has non-prime length
mod u(z)v(z)] mod u(z) for any u(z)and v(z). This N—1, and so we can evaluate it via the convolution theorem
means that we can first computéz) modulo theproduct with FFTs in O(N log N) time (except for some unusual
of the factors, and then recursively evaluate the remaindases).

by arecursive factorization of this product. But the prod-

uct [T, (z — e~ F*) = 2N — 1, since thee=F** are just Fyrther Reading

the Nth roots of unity (solutions ot — 1 = 0). It fol-

lows that any recursive factorizationof —1into Nlog N e D. N. Rockmore, “The FFT: An Algorithm the

bounded-degree factors gives us@fV log N') FFT algo- Whole Family Can Use,"Comput. Sci. Eng. 2
rithm! In particular, the radix-2 Cooley-Tukey algorithmis (1), 60 (2000). Special issue on “top ten” algo-
equivalent to the recursive factorization (fa¥ a power of rithms of century. See: http://ftinyurl.com/3wjvk and
2): 2N —a = (N2 - /a)(z"/? + \/a), where we start http://tinyurl.com/yvonp8

. o . I 27 k
with a = 1 and end up witlu = e™"~" % e “Fast Fourier transform Mkipedia: The Free Ency-

Different recursive factor|zat|oqs of’ — 1_Iead to_d'f' clopedia (http://tinyurl.com/5¢c6f3). Edited by SGJ for
ferent FFT algorithms, one of whl_ch you WI|| examine for correctness as of 10 Jan 2006 (along with subsidiary
homevyork. Many other_ FFT algorithms exist as well, from articles on C-T and other specific algorithms).
the “prime-factor algorithm” (1958) that exploits the Chi-
nese remainder theorem fged (N1, No) = 1,t0o FFT algo- e “The Fastest Fourier Transform in the West,” a free
rithms that work foprime IV, one of which we give below. FFT implementation obviously named by arrogant

The core of the DFT is the constanfy = e~ '~ ; be- MIT graduate students. http://www.fftw.org/
cause this is a primitive root of unityl = 1), any ex-
ponent ofwy is evaluatednodulo N. That is,wy = wjy
wherer is the remainder when we divide by N (r = m
mod N). A great body of humber theory has been de-
veloped around such “modular arithmetic”, and we cdrlomework Problems
exploit it to develop FFT algorithms different from C-T.
For example, Rader’s algorithm (1968) allows us to com
pute O(N log N) FFTs of prime sizesN, by turning the
DFT into a cyclicconvolution of length N — 1, which in
turn is evaluated by (non-prime) FFTs. Givep andb,
(n=0,---,N — 1), their convolutiorc,, is defined by the
sum

Problem 1: Prove that equation (2) really is the inverse of
equation (1). Hint: subsitute (1) into (2), interchange the
order of the two sums, and sum the geometric series.
Problem 2: (a) Prove that forV a power of 2, we can recur-
sively factorizez"¥ — 1 into polynomials of the form™ — 1
andz?M + az™ + 1 with a some real numbers and < 2,
for a decreasing sequenceldfall the way down ta\/ = 1.
Cn = Z A Dn—ms (6) (The final quadratic factors fav/ = 1 can then be factored
into conjugate pairs of roots of umty— .) This gives an
where the convolution iscyclic if the n — m sub- FFT algorithm due to Bruun (1978), distinct from Cooley-
script is “wrapped” periodically ontoo,---,N — 1. Tukeyinthatall of its multiplicative constants'¢) arereal
This operation is central to digital filtering, differentianumbers until the very last stefb) Apply this algorithm to
equations, and other applications, and is evaluatedWHte down the steps for a “Bruun” FFT of sizé = 8, and
O(Nlog N) time by the convolution theorem: ¢, = count the number of required real additions and multiplica-
inverse FFTFFT(a,) - FFT(b,)). Now, back to the FFT... tions (not counting operations farindependent constants
For prime N, there exists ajenerator ¢ of the multi- like 2.4/2 that can be precomputed, and not counting trivial
plicative group modulaV: this means thag? mod N for Mmultiplications by=1 or +i). Compare this to the mini-
p=20,---,N—2producesalh = 1,--- , N — 1 exactly Mum known operation count of 56 total real additions and
once (but not in order!). Thus, we can write all non-zeromultiplications for NV = 8 (achieved by the “split-radix”
andk in the formn = g? andk = ¢V~ for somep and algorithm).
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