.

Convergence of Power lteration

e Expand initial v(9 in orthonormal eigenvectors ¢;, and apply AF:

0O = ayqy + axge + -+ + A
o) = e AR
= crlaNiq + aa\ige + -+ a i g)
= (g + a2(Mo/ M) g2 + -+ am (A /M1) )

o If [\| > [Xo| > -+ > |\n| > 0and g7 0@ # 0, this gives:

k
% )( B — M| =0
1

e Finds the largest eigenvalue (unless eigenvector orthogonal to v<°>)

2%
A

o) = ()l = 0 N

e Linear convergence, factor ~ )\2/)\1 at each iteration

)(

\_

[ — (£q))| = O

Inverse lteration

1

e Apply power iteration on (A — ;1) ™!, with eigenvalues (\; — )~

Algorithm: Inverse lIteration

v = some vector with [[v(?|| = 1

for k=1,2,...

Solve (A — pl)w = v*=V for w
vk =/
AR (YT 48

apply (A — pl)~!

normalize

|wl|

Rayleigh quotient

e Converges to eigenvector ¢ if the parameter 1 is close to A s:

A\, ‘ L— ), 2k
I J ‘)\(k)i)u‘:o / J
B— Ak

= Ak

4 N\ _ _ )
Real Symmetric Matrices
e We will only consider eigenvalue problems for real symmetric matrices
Lecture 15 o Then A = AT ¢ R™™ n € R™, o* = 2T, and ||z| = VaTx
The QR Algorithm | e A then also has
real eigenvalues: A1, ..., A\,
MIT 18.335J / 6.337J .
orthonormal eigenvectors: qi, - . - , Gm
Introduction to Numerical Methods
e Eigenvectors are normalized ||¢;|| = 1, and sometimes the eigenvalues
Per-Olof Persson are ordered in a particular way
October 31, 2006 e |Initial reduction to tridiagonal form assumed
— Brings cost for typical steps down from O(m?) to O(m)
\_ /. J
1 2
- _ _ N [ . )
Rayleigh Quotient Power Iteration
e The Rayleigh quotient of z € R™: e Simple power iteration for largest eigenvalue:
(2) 2T Ax Algorithm: Power Iteration
r(z) =
2T
v = some vector with ||v(?)]| = 1
e For an eigenvector x, the corresponding eigenvalue is 7(1) =A
for k=1,2,...
e For general z, r(x) = « that minimizes ||Az — ax||2 w = Ap*-D apply A
e x eigenvector of A <= Vr(z) = Owithx # 0 v®) = w/||w| normalize
e 7(x)is smooth and Vr(g;) = 0, therefore quadratically accurate: AE) = (T 4y (k) Rayleigh quotient
r(z) —r(qs) = O(||lx — qJ||2) as T — qy e Termination conditions usually omitted
\_ /. J
3 4
4 N\ [ )

)

J

5




Rayleigh Quotient Iteration

e Parameter j4 is constant in inverse iteration, but convergence is better for

1t close to the eigenvalue

e Improvement: At each iteration, set j to last computed Rayleigh quotient

Algorithm: Rayleigh Quotient Iteration

v = some vector with ||[v(?]| = 1
MO = (p(NT Ay = corresponding Rayleigh quotient
for k=1,2,...
Solve (A — A*=D)w = v*=Y for w
v®) = w/||lw]|

A®) = (DT 4y ®)

apply matrix
normalize

Rayleigh quotient

Convergence of Rayleigh Quotient Iteration

e Cubic convergence in Rayleigh quotient iteration:
[o®* = (£gs)]| = O™ = (£¢.)°)
and

A — Xj1 = O(IA® — A1)

e Proof idea: If v*) is close to an eigenvector, |[v*) — qs|| < e thenthe

accurate of the Rayleigh quotient estimate A*) is [A®) — X\ ;| = O(¢?).

One step of inverse iteration then gives

[t — g = O(A® = A, [lo® — g,]) = O(?)

The QR Algorithm

e Remarkably simple algorithm: QR factorize and multiply in reverse order:

Algorithm: “Pure” QR Algorithm

A = A

for k=1,2,...
OQ®) R — A(k=1)
A®) — RIIQW)

QR factorization of A%~

Recombine factors in reverse order

e With some assumptions, A converge to a Schur form for A (diagonal if

A symmetric)

e Similarity transformations of A:

AR — R(k)Q(k) _ (Q(k))TA(k—l)Q(k)

Unnormalized Simultaneous lteration

e To understand the QR algorithm, first consider a simpler algorithm

e Simultaneous lteration is power iteration applied to several vectors

e Start with linearly independent vf”, o ,v,(I,O)

e \We know from power iteration that A’“v§0) converges to q;

e With some assumptions, the space (A*v”, .. | ARy should

convergeto qi, . . ., Gn

e Notation: Define initial matrix V(*) and matrix V¥ at step k:

VO = [ RO | ,O [ y® o gy @ | Y® ||

10

Unnormalized Simultaneous lteration

Define well-behaved basis for column space of V&) by Q<k)R<k> =V®

Make the assumptions:
— The leading n + 1 eigenvalues are distinct

— All principal leading principal submatrices of QTV(O) are nonsingular,

where columns of QQ are g1, ..., ¢n

We then have that the columns of (;)“’) converge to eigenvectors of A:
k .
lgy” — +q,1l = 0(C*)
where C' = max;<g<p | Aet1]/| Ak

Proof. Textbook / Black board

~N

Simultaneous Iteration

e The matrices V*) = A1) are highly ill-conditioned

e Orthonormalize at each step rather than at the end:

Algorithm: Simultaneous lteration

Pick Q0 e Rm*»

for k=1,2,...
7 = AQ*-D
QU“)]:B(’“) =7 Reduced QR factorization of Z

e The column spaces of Q(k) and Z*) are both equal to the column space

of AkQ(O), therefore same convergence as before

11
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Simultaneous lteration <— QR Algorithm

e The QR algorithm is equivalent to simultaneous iteration with Q(O) =1

e Notation: Replace R*) by R*), and Q™) by Q<k>

Simultaneous lteration: Unshifted QR Algorithm:
QO =1 A0 — 4
7Z — AQU»‘*l) Alk=1) — Q(k)R(k)
7 = Q(T“)R““) AR = REQ®E)
Ak — @(k))TAQ(k) QP =QWQ® ...QW

o Also define R® = RF) pk=1) ... p(1)

o Now show that the two processes generate same sequences of matrices

.

J

Simultaneous lteration <— QR Algorithm

e Both schemes generate the QR factorization Ak = Q(k)ﬁ(k) and the
projection A*) = (Q<k))TAQ(k)

e Proof. k& = 0 trivial for both algorithms.

For k > 1 with simultaneous iteration, A®) s given by definition, and
AF — AQ(k_l)E(k_l) — Q(R)R(k)ﬁ(k‘—l) — Q(k)ﬂ(k)
For k > 1 with unshifted QR, we have

AF = AQ(kfl)E(kfl) _ Q(kfl)A(k—l)E(kfl) _ Q(k)E(k)

and

AR — (Q(k))TA(kfl)Q(k‘) — (Q(kv))TAQ(k)

13
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