
 

  

      

Adjoint Methods 

Steven G. Johnson 

Created Spring 2006, updated December 17, 2012. 

1 Introduction 

Given the solution x of a discretized PDE or some 
other set of M equations parameterized by P vari-
ables p (design parameters, a.k.a. control variables 
or decision parameters), we often wish to compute 
some function g(x,p) based on the parameters and 
the solution. For example, if the PDE is a wave equa-
tion, we might want to know the scattered power in 
some direction. Or, for a mechanical simulation, we 
might want to know the load-bearing capacity of the 
structure. Or for a fluid, we might wish to know the 
flow rate somewhere. Often, however, we want to 
know more than just the value of g—we also want to 
know its gradient d

dg 
p . Adjoint methods give an effi-

cient way to evaluate d
dg 

p , with a cost independent of 
P and usually comparable to the cost of solving for x 
once. 

The gradient of g with respect to p is extremely 
useful. It gives a measure of the sensitivity of our an-
swer to the parameters p (which may, for example, 
come from some experimental measurements with 
some associated uncertainties). Or, we may want 
to perform an optimization of g, picking the p that 
produce some desired result; in this case the gradi-
ent indicates a useful search direction (e.g. for non-
linear conjugate-gradient optimization). For large-
scale optimization problems, the number P of design 
parameters can be hundreds, thousands, or more— 
this is common in shape or topology optimization, 
in which p controls the placement and shape of ar-
bitrary blobs of different materials constituting a 
given structure/design. Sometimes, this process is 
called inverse design: finding the problem that yields 
a given solution instead of the other way around. 
When P � 1, the amazing efficiency of adjoint meth-
ods makes inverse design possible. 

I hadn’t found any textbook description of adjoint 
methods that I particularly like, which is part of my 
motivation for writing up these notes. One introduc-
tion can be found in [1], and a more general treatment 

can be found in [2]. Subsequently, Gil Strang wrote a 
nice introduction to adjoint methods in his book [3], 
including a discussion of the important topic of auto-
matic differentiation (for which adjoint or “reverse” 
differentiation is a key idea). 

2 Linear equations 

Suppose that the column-vector x solves the M × M 
linear equation Ax = b where we take b and A to be 
real1 and to depend in some way on p. To evaluate 
the gradient directly, we would do 

dg 
= gp + gxxp dp 

where the subscripts indicate partial derivatives (gx 

is a row vector, xp is an M × P matrix, etc.). Since g 
is a given function, gp and gx are presumably easy to 
compute. On the other hand, computing xp is hard: 
evaluating it directly by differentiating Ax = b by a 
parameter pi gives xpi = A−1(bpi − Api x). That is, 
we would have to solve an M × M linear equation for 
P right-hand sides, once for every compont of p; this 
is impractical if P and M are large. 

More explicitly, the problematic term is: 

gxxp = gx [ A−1 (bp − Apx)] = [gxA−1] (bp − Apx), |{z} |{z} | {z } | {z }| {z } 
M×M 1×M M×P 1×M M×P 

where Apx denotes the M × P matrix with columns 
Api x for i = 1, . . .P.2 One way of looking at the diffi-
culty is that in the first equation we multiply a M ×M 
matrix by a M × P matrix, which costs O(M2P) 
work, or equivalently we have multiplications of A−1 

1This involves no loss of generality, since complex linear equa-
tions can always be written as real linear equations of twice the 
size by taking the real and imaginary parts as separate variables. 

2Technically, Ap is a rank-3 tensor or “three-dimensional ma-
trix,” although it almost certainly isn’t stored this way. For exam-
ple, Api x could be computed for each i separately without saving 
Api . Often, Api will be very sparse. 

1 



����

����

λλ

λλ

λλ

λλ λλ

λλ

λλ λλ

λλ

λλ

λλ

λλ

λλ

by P vectors (i.e., solves of P right-hand sides, which 
in practice would likely use a factorization of A or 
an iterative solver rather than explicitly computing 
A−1).3 However, this can be ameliorated simply by 
parenthesizing in a different way [3],4 as shown in 
the last expression. If we multiply λ T = gxA−1 first, 
that corresponds to only a single solution of an ad-
joint equation5 

T AT 
λ = gx . (1) 

and then we multiply a single vector λ T by our M×P 
matrix for only θ (MP) work. Putting it all together, 
we obtain: 

dg 
= gp − λ T fp = gp − λ T (Apx − bp). dp f=0 

Again, A(p) and b(p) are presumably specified an-
alytically and thus Ap and bp can easily be com-
puted (in some cases automatically, by automatic 
program differentiators such as ADIFOR). Note that 
the adjoint problem is of the same size as the orig-
inal Ax = b system, can use the same factorization 
(e.g. LU factorization A = LU immediately gives 
AT = UT LT ), has the same condition number, and 
has the same spectrum of eigenvalues (the eigenval-
ues of A and AT are identical) so iterative algorithms 
will have similar performance (and can use similar 
preconditioners)—in every sense, solving the adjoint 
problem should be no harder than solving the origi-
nal problem. 

3 Nonlinear equations 

If x satisfies some general, possibly nonlinear, equa-
tions f(x,p) = 0, the process is almost exactly the 
same. Differentiating the f equation, we find fxxp + 

3If M is sparse, then the cost might be significantly less than 
this O(M2P) upper bound, but in any case solving P right-hand 
sides will be significantly more costly than solving a single right-
hand side for the adjoint formulation. 

4Another way of looking at this, and the source of the λ no-
tation, is to think of sort of a “Lagrange multiplier” process: re-
place g with g̃ = g − λ T f by adding a multiple λ of f = 0, and 
then choose λ is a clever way to cancel the annoying derivative 
term. This gives the same result, and may be easier to general-
ize to some more complicated circumstances, however, such as 
differential-algebraic equations [2]. 

5For complex-valued x and A and real g, instead of the trans-
pose AT one typically obtains the adjoint A† = AT∗ (the conjugate-
transpose). 

fp = 0 and thus xp = −fx 
−1fp. Hence, we write 

dg 
= gp +gxxp = gp − gx [ f−1 fp ] = gp −[gxf−1] x x dp |{z} |{z} |{z} | {z } 

1×M M×M M×P 1×M 

We solve for x by whatever method, then solve for λ 
from 

fT T 
λ = gx , (2) x 

and finally obtain 

dg 
= gp − λ T fp. (3) 

dp f=0 

The only difference is that the adjoint equation (2) is 
not simply the adjoint of the equation for x. Still, it 
is a single M × M linear equation for λ that should 
be of comparable (or lesser) difficulty to solving for 
x. 

4 Eigenproblems 

As a more complicated example illustrating the use 
of equations (2) and (3) from the previous sections, 
let us suppose that we are solving a linear eigen-
problem Ax = αx and looking at some function 
g(x,α,p). For simplicity, assume that A is real-
symmetric and that α is simple (non-degenerate; i.e., 
x is the only eigenvector for α).6 In this case, we 
now have M + 1 unknowns described by the column 
vector: � � 

x x̃ = . 
α 

The eigenequation f = Ax − αx only gives us M 
equations and doesn’t completely determine x̃, for 
two reasons. First, of course, there are many possi-
ble eigenvalues, but let’s assume that we have picked 
one in some fashion (e.g. the smallest α , or the α 
closest to π , or the third largest |α|, or ...). Second, 
the eigenequation does not determine the length |x|; 
let’s arbitrarily pick |x| = 1 or xT x = 1. This gives us 
M + 1 equations f̃ = 0 where: � � 

f f̃ = . xT x − 1 

6Problems involving degenerate eigenvalues occur surpris-
ingly often in optimization of eigenvalues (e.g. when maximiz-
ing the minimum eigenvalue of some system), and must be treated 
with special care. In that case, a generalization of the gradient 
is required to determine sensitivities or the steepest-descent di-
rection [4], a more elaborate version of what is called degenerate 
perturbation theory in quantum mechanics [?]. 

fp . |{z} 
M×P 

2 



����

λλ

λλ
λλ

λλ

λλ

λλ

λλ

λλ

λλ λλ

λλ

λλ

λλ λλ

ψψ

ψψ

ψψ ψψ

ψψ ψψ ψψ ψψ

ψψψψ

λλ

ψψ ψψ ψψ ψψ ψψ

λλ

We’ll need M + 1 adjoint variables λ̃ : � � 
λ 

λ̃ = . 
β 

The adjoint equations (2) then give: 

T (A− α)λ = g − 2β x, (4) x 

−xT 
λ = gα . (5) 

The first equation, at first glance, seems to be prob-
lematic: A−α is singular, with a null space of x. It’s, 
okay, though! First, we have to choose β so that so-
lutions of equation (4) exist: the right-hand side must 
be orthogonal to x so that it is not in the null space 

T of A − α . That is, we must have xT (g − 2β x) = 0, x 
T and thus β = xT g /2 (since xT x = 1), and therefore x 

λ satisfies: 

T (A − α)λ = (1− xxT )g = PgT (6) x x 

where P = 1− xxT is the projection operator into the 
space orthogonal to x. This equation then has a solu-
tion, and in fact it has infinitely many solutions: we 
can add any multiple of x to λ and still have a so-
lution. Equivalently, we can write λ = λ 0 + γx for 
xT λ 0 = 0 and some γ . Fortunately, γ is determined 
by (5): γ = −gα . Finally, with λ 0 determined by 
(6),7 we can find the desired gradient via (3): 

dg 
= gp − λ T Apx = gp − λ T 

0 Apx + gα xT Apx. 
dp f=0 

(7) 
If we compare with d

dg 
p = gp + gxxp + gα αp, we im-

mediately see that αp = xT Apx. This is a well-known 
result from quantum physics and perturbation theory, 
where it is known as the Hellman-Feynman theorem. 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

ψ
0

ψ

V / 1000

Figure 1: Optimized V (x) (scaled by 1/1000) and 
ψ(x) for ψ0(x) = 1 + sin[πx + cos(3πx)] after 500 
cg iterations. 

Now, however, we will specify a particular ψ0(x) and 
find the V (x) that gives ψ(x) ≈ ψ0(x) for the ground-
state eigenfunction (i.e. for the smallest eigenvalue 
E). In particular, we will find the V (x) that mini-
mizes Z 1 

g = |ψ(x) − ψ0(x)|2dx. 
−1 

To solve this numerically, we will discretize the in-
terval x ∈ [−1,1) with M equally-spaced points xn = 

2 nΔx (Δx = M+1 ), and solve for the solution ψ(xn) 
at these points, denoted by the vector ψ . That is, 
to compare with the notation of the previous sec-
tions, we have the eigenvector x = ψ , the eigenvalue 
α = E, and the parameters V (xn) or p = V. If we 
discretize the eigenoperator with the usual center-
difference scheme, we get Aψ = Eψ for: ⎞ ⎛ 

2 −1 0 · · · 0 −1 
5 Example inverse design ⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

−1 2 −1 0 · · · 
0 −1 2 −1 0 · · · 1 

As a more concrete example of an inverse-design A = 
problem, let’s consider the Schrodinger eigen-

+diag(V). . 
Δx2 . . . . . 

−1 2 −1 equation in one dimension, 
−1 0 · · · 0 −1 2 � � 

− 
d2 

dx2 +V (x) ψ(x) = Eψ(x), As before, we normalize ψ (and ψ0) to ψT ψ = 1,8 

giving a projection operator P = 1 − ψ ψT (or P = 
1 −|ψihψ|, in Dirac notation). The discrete version 
of g is now 

with periodic boundaries ψ(x + 2) = ψ(x). Nor-
mally, we take a given V (x) and solve for ψ and E. 

R 

7Since P commutes with A − α , we can solve for λ 0 easily by 
an iterative method such as conjugate gradient: if we start with an g(ψ,V) = (ψ − ψ0)

T (ψ − ψ0)Δx 
initial guess orthogonal to x, all subsequent iterates will also be 

8We also have an arbitrary choice of sign, which we fix by orthogonal to x and will thus converge to λ 0 (except for roundoff, 
which can be corrected by multiplying the final result by P). choosing 

3 

ψdx > 0. 



� �

ψψ

ψψ ψψ ψψ

λλ

λλ ψψ ψψ

λλ λλ λλ

λλ ψψ

λλ

where ψ0 is ψ0(xn), our target eigenfunction. There-
fore, gψ = 2(ψ − ψ0)

T Δx and thus, by eq. (6), we 
find λ via: 

(A− E)λ = 2P(ψ − ψ0)Δx, (8) 

with Pλ = 0 (λ = λ 0 since gE = 0). gV and gE are 
both 0. Moreover, AVn is simply the matrix with 1 at 
(n,n) and 0’s elsewhere, and thus from (7): 

dg 
= −λnψn dVn 

or equivalently dg = −λ ψ where is the point-dV 
wise product (.* in Matlab). 

Whew! Now how do we solve these equations nu-
merically? This is illustrated by the Matlab function 
schrodinger_fd_adj given below. We set up A as 
a sparse matrix, then find the smallest eigenvalue and 
eigenvector via the eigs function (which uses an it-
erative Arnoldi method). Then we solve (8) for λ via 
the Matlab pcg function (preconditioned conjugate-
gradient, although we don’t bother with a precondi-
tioner). 

Then, given g and d
dg 
V , we then just plug it into 

some optimization algorithm. In particular, nonlin-
ear conjugate gradient seems to work well for this 
problem.9 

5.1 Optimization results 

In this section, we give a few example results from 
running the above procedure (nonlinear cg optimiza-
tion) for M = 100. As the starting guess for our opti-
mization, we’ll just use V (x) = 0. That is, we are do-
ing a local optimization in a 100-dimensional space, 
using the adjoint method to get the gradient. It is 
somewhat remarkable that this works—in a few sec-
onds on a PC, it converges to a very good solution! 

We’ll try a couple of example ψ0(x) functions. To 
start with, let’s do ψ0(x) = 1 + sin[πx + cos(3πx)]. 
(Note that the ground-state ψ will never have any 
nodes, so we require ψ0 ≥ 0 everywhere.) This 
ψ0(x), along with the resulting ψ(x) and V (x) after 
500 cg iterations, are shown in figure 1. The solution 
ψ(x) matches ψ0(x) very well except for a couple 
of small ripples, and V (x) is quite complicated—not 
something you could easily guess! 

9I used the nonlinear conjugate-gradient Matlab conj_grad 
routine from: 

http://www2.imm.dtu.dk/~hbn/Software/ 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

ψ
0

ψ

V / 10000

Figure 2: Optimized V (x) (scaled by 1/10000) and 
ψ(x) for ψ0(x) = 1 −|x| for |x| < 0.5, after 5000 cg 
iterations. 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

ψ
(x

)

10 cg iterations

20

40

80

160

320

5000

Figure 3: Optimized ψ(x) for ψ0(x) = 1 − |x| 
for |x| < 0.5, after various numbers of nonlinear 
conjugate-gradient iterations (from 10 to 10000). 

4 

http://www2.imm.dtu.dk/~hbn/Software


a column-vector
eigen-equation

nvalue E and

psi0|^2 and

N,N);

eigs already

normal to psi

1e-6, N);

ψψ

ψψ

Oh, but that ψ0 was too easy! Let’s try one with 
discontinuities: ψ0(x) = 1 − |x| for |x| < 0.5 and 0 
otherwise (which looks a bit like a “house”). This 
ψ0(x), along with the resulting ψ(x) and V (x) after 
500 cg iterations, are shown in figure 2. Amazingly, 
it still captures ψ0 pretty well, although it has a bit 
more trouble with the discontinuities than with the 
slope discontinuity. This time, we let it converge for 
5000 cg iterations to give it a bit more time. Was this 
really necessary? In figure 3, we plot ψ(x) for 10, 
20, 40, 80, 160, 320, and 5000 cg iterations. It gets 
the rough shape pretty quickly, but the discontinuous 
features are converging fairly slowly. (Presumably 
this could be improved if we found a good precondi-
tioner, or perhaps by a different optimization method 
or objective function.) 

5.2 Matlab code 
dg The following code solves for g and dV , not to 

mention the eigenfunction ψ and the corresponding 
eigenvalue E, for a given V and ψ0. 

% Usage: [g,gp,E,psi] = schrodinger_fd_adj(x, V, psi0) 
% 
% Given a column-vector x(:) of N equally spaced x points and 
% V of the potential V(x) at those points, solves Schrodinger’s 
% [ -d^2/dx^2 + V(x) ] psi(x) = E psi(x) 
% with periodic boundaries for the lowest "ground state" eige 
% wavefunction psi. 
% 
% Furthermore, it computes the function g = integral |psi -
% the gradient gp = dg/dV (at each point x). 

function [g,gp,E,psi] = schrodinger_fd_adj(x, V, psi0) 
dx = x(2) - x(1); 
N = length(x); 
A = spdiags([ones(N,1), -2 * ones(N,1), ones(N,1)], -1:1, 
A(1,N) = 1; 
A(N,1) = 1; 
A = - A / dx^2 + spdiags(V, 0, N,N); 

opts.disp = 0; 
[psi,E] = eigs(A, 1, ’sa’, opts); 
E = E(1,1); 
if sum(psi) < 0 

psi = -psi; % pick sign; note that psi’ * psi = 1 from 
end 

gpsi = psi - psi0; 
g = gpsi’ * gpsi * dx; 
gpsi = gpsi * 2*dx; 

P = @(x) x - psi * (psi’ * x); % projection onto direction 

[lambda,flag] = pcg(A - spdiags(E*ones(N,1), 0, N,N), P(gpsi), 
lambda = P(lambda); 
gp = -real(conj(lambda) .* psi); 

disp(g); 

5 



λλ

λλ

λλ λλ

λλ λλ

λλ

λλ

λλ

λλ

λλ λλ

λλ

λλ

λλ

6 Initial-value problems 

So far, we have looked at x that are determined by 
“simple” algebraic equations (which may come from 
a PDE, etcetera). What if, instead, we are determin-
ing x by integrating a set of equations in time? The 
simplest example of this is an initial-value problem 
for a linear, time-independent, homogeneous set of 
ODEs: 

ẋ = Bx 

whose solution after a time t for x(0) = b is formally: 

Bt b. x = x(t) = e 

This, however, is exactly a linear equation Ax = b 
= e−Bt with A , so we can just quote our results from 

earlier! That is, suppose we are optimizing (or eval-
uating the sensitivity) of some function g(x,p) based 
on the solution x at time t. Then we find the adjoint 
vector λ via (1): 

−BT t 
λ T e = gx . 

Equivalently, λ is the exactly the solution λ (t) after 
a time t of its own adjoint ODE: 

λ̇ = BT 
λ 

with initial condition λ (0) = gx 
T . We should have 

expected this by now: solving for λ always involves 
a task of similar complexity to finding x, so if we 
found x by integrating an ODE then we find λ by 
an ODE too! Of course, we need not solve these 
ODEs by matrix exponentials; we can use Runge-
Kutta, forward Euler, or (if B comes from a PDE) 
whatever scheme we deem appropriate (e.g. Crank-
Nicolson). 

One important property to worry about is stability, 
and here we are in luck. The eigenvalues of B and 
BT are complex-conjugates, and so if one is stable 
(eigenvalues with absolute values ≤ 1) then the other 
is! 

Finally, we can write down the gradient d
dg 

p via 
equation (3): 

dg 
= gp − λ T (Apx − bp). dp 

= e−Bt Now, since A , one might be tempted to write 
Ap = −Bpt · A, but this is not true except in the very 
special case where Bp commutes with B! Unfortu-
nately, the general expression for differentiating a 

matrix exponential turns out to be more complicated: 
Ap = − 

R 
0 
t e−Bt 0 Bpe−B(t−t 0)dt 0, and so, Z t dg 
= gp + λ T (t − t 0)Bpx(t 0)dt 0 + λ T bp. dp 0 

This is especially unfortunate because it usually 
means that we have to store x(t 0) at all times 0 ≤ t 0 ≤ 
t in order to compute the integral. Adjoint methods 
are storage-intensive for time-dependent problems! 

More generally, of course, one might wish to in-
clude time-varying A, nonlinearities, inhomogeneous 
(source) terms, etcetera, into the equations to inte-
grate. A very general formulation of the problem, 
for differential-algebraic equations (DAEs), can be 
found in [2]. A similar general principle remains, 
however: the adjoint variable λ is determined by 
integrating a similar (adjoint) DAE, using the final 
value of x(t) to compute the initial condition of λ (0). 
In fact, the λ (t) equation is actually often interpreted 
as being integrated backwards in time from t to 0. 
Alternatively, one can consider a “discrete-time” sit-
uation of recurrence equations, in which case the ad-
joint problem is a recurrence “backward in time”— 
see my online notes on adjoint methods for recur-
rences. 

References 

[1] R. M. Errico, “What is an adjoint model?,” Bul-
letin Am. Meteorological Soc., vol. 78, pp. 2577– 
2591, 1997. 

[2] Y. Cao, S. Li, L. Petzold, and R. Serban, 
“Adjoint sensitivity analysis for differential-
algebraic equations: The adjoint DAE system 
and its numerical solution,” SIAM J. Sci. Com-
put., vol. 24, no. 3, pp. 1076–1089, 2003. 

[3] G. Strang, Computational Science and Engi-
neering. Wellesley, MA: Wellesley-Cambridge 
Press, 2007. 

[4] A. P. Seyranian, E. Lund, and N. Olhoff, “Mul-
tiple eigenvalues in structural optimization prob-
lems,” Structural Optimization, vol. 8, pp. 207– 
227, 1994. 

6 



  
 

  
  

            

MIT OpenCourseWare 
https://ocw.mit.edu 

18.335J Introduction to Numerical Methods 
Spring 2019 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	Blank Page




