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1 Evolving Curves and Surfaces 

Evolving boundaries or interfaces are part of many problems in science and 
engineering. In 1988, James A. Sethian and Stanley Osher proposed to repre­
sent these boundaries implicitly and model their propagation using appropriate 
partial differential equations. The boundary is given by level sets of a function 
φ(x), and they named their technique the Level Set Method. These notes give 
a short introduction to the method, and for more details we refer to the books 
by Sethian [4] and Osher [1], as well as their original paper [2]. 

Consider a boundary curve in two dimensions or a surface in three dimen­
sions, see Figure 1. We are given a velocity field v, which in general depends on 
space, time, properties of the boundary (such as the normal direction and the 
curvature), as well as an indirect dependence from physical simulations using 
the boundary shape. To goal is to accurately model the evolution of the bound­
ary under the velocities v. In many cases we are only interested in the motion 
normal to the interface. We can then use a (scalar) speed function F , and let 
the velocities be given by v = Fn, where n is the normal direction. 

1.1 Explicit Techniques 

A simple approach to model the boundary motion is to represent it explicitly, 
for example (in two dimensions) by nodes along the curve that are connected 
by line segments. We then move these nodes according to the velocities v by 
solving the system of ODEs: 

dx
(i) 

= v(x (i), t), x (i)(0) = x (0 
i) 
, (1)

dt 
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Figure 1: An interface evolving according to the speed function F . 

where x(i) contains the coordinates of node i, v is the velocity function, and x (0 
i) 

is the initial node location. This system can be solved accurately using explicit 
time integration schemes, e.g. forward Euler or Runge-Kutta methods. 

When the velocity is given by Fn, we have to evaluate n at each node. 
We can approximate the tangent vector by central difference approximations 
involving the neighboring nodes, e.g. 

dx
(i) 

x
(i+1) − x

(i−1) 

≈	 (2) 
ds 2Δs 

(assuming equal distance Δs between the nodes), and expressing the normal in 
terms of the tangent and normalizing. Similar approximations can be used to 
compute other geometric variables such as the curvature. 

While this explicit scheme might be sufficient for small deformations of the 
initial interface, it has several drawbacks for general motions: 

•	 During the evolution, the nodes become unevenly distributed and the 
numerical representation of the curve gets inaccurate (see Figure 2, left). 
By inserting and removing nodes we can improve the representation, but 
this introduces errors. 

•	 Around sharp corners, the scheme will not produce the desired “entropy 
solution”, but will generate an incorrect “shadowtail solution” (Figure 2, 
center). 

•	 Topological changes, such as merging curves, require special treatment 
(Figure 2, right). 

•	 For curvature dependent speed functions F (κ), the scheme is sensitive to 
small perturbation which leads to instabilities unless the time steps are 
very small. 
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Figure 2: Problems with explicit techniques. 

1.2 Implicit Geometries 

In the level set method, the interface is represented implicitly by the zero level 
set of a function, φ(x) = 0. Note that φ is defined for all x, not just the ones on 
the boundary. To represent φ in a finite form on a computer, we discretize using 
a background mesh. A common choice is a simple Cartesian grid, but quadtrees 
or octrees can be used for higher efficiency. An example of a discretized implicit 
function is shown in Figure 3. 

The actual interface can be extracted from bilinear interpolation in each grid 
cell, but the main philosophy of the level set method is that the interface should 
only be accessed implicitly by operating on φ. Exception to this are for plotting 
purposes, and possibly for the reinitialization (see below). 

A special case of implicit representation is the signed distance function. It 
has the property that |∇φ| = 1, with different signs at the two sides of the 
interface. Also, |φ(x)| gives the (shortest) distance from x to the boundary 
φ = 0. The level set method does not require φ to be a distance function, 
but the numerical approximations are inaccurate if φ has large variations in the 
gradient. We therefore try to keep φ close to a signed distance function, by 
frequent reinitializations (see below). 

Geometric variables can be computed from φ without extraction of the in­
terface. The normal vector is given by 

∇φ 
n = (3) 

|∇φ| 

(since φ is constant at a level set, ∇φ points in the normal direction). The 
curvature of a curve in two dimensions is 

∇φ φxxφ2 
y − 2φyφxφxy + φyyφ2 

x
κ = ∇ ·

|∇φ| 
=

(φ2 
x + φ2 

y)3/2 
. (4) 
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Figure 3: A signed distance function φ discretized on a Cartesian grid. 

In three dimensions, we compute the mean curvature 

(φyy + φzz)φx 
2 + (φxx + φzz)φy 

2 + (φxx + φyy)φ2 
z 

∇φ −2φxφy φxy − 2φxφz φxz − 2φyφzφyz 
κM = ∇ · = (5) 

|∇φ| (φ2 
x + φ2 

y + φ2 
z )

3/2 

and the Gaussian curvature 
  

 
φ2 − φ2 ) + φ2 − φ2 ) + φ2 − φ2 ) 

x(φyy φzz yz y (φxxφzz xz z (φxxφyy xy

+2[φxφy(φxzφyz − φxyφzz) + φyφz(φxyφxz − φyz φxx) 
  

+φxφz(φxy φyz − φxz φyy)] 
κG = . (6) 

(φ2 
x + φ2 

y + φ2 
z)

2 

From these the principal curvatures can be obtained as κM ± κ2 − κG.M 
Using φ, we can also write different expressions for the two regions φ < 0, 

and φ > 0. For example, the density 

ρ(x) = ρ1 + (ρ2 − ρ1)θ(φ(x)) (7) 

takes the value ρ1 for φ < 0 and ρ2 for φ > 0. On a discrete grid, the Heaviside 
function θ(x) has to be approximated numerically for example by smoothing. 

1.3 The Level Set Equation 

Using the implicit representation φ, we can propagate the zero level set by the 
velocity field v by solving the convection equation (we actually propagate all 
the level sets, not just φ = 0): 

φt + v · ∇φ = 0. (8) 

For motion in the normal direction, we use (3) and write v = Fn = F ∇φ/|∇φ|. 
Insert in (8) and use ∇φ · ∇φ = |∇φ|2 to obtain the Level Set Equation 

φt + F |∇φ| = 0. (9) 
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1.4 Discretization 

The convection equation (8) can be solved numerically using first order up-
winding. For the level set equation (9), with use the following first order finite 
difference approximation: 

φn+1 = φn max(F, 0)∇+ + min(F, 0)∇− , (10) ijk ijk + Δt1 ijk ijk 

where 

∇+ = max(D−xφn + min(D+xφn +ijk 

[ 

ijk, 0)2 
ijk, 0)2

max(D−yφn + min(D+yφn +ijk, 0)2 
ijk, 0)2

max(D−z φn + min(D+z φn 
]1/2 

, (11) ijk, 0)2 
ijk, 0)2

∇− = min(D−xφn + max(D+xφn +ijk ijk, 0)2 
ijk, 0)2

min(D−yφn + max(D+yφn +ijk, 0)2 
ijk, 0)2

min(D−z φn + max(D+z φn 
]1/2 

. (12) ijk, 0)2 
ijk, 0)2

Here, D−x is the backward difference operator in the x-direction, D+x the 
forward difference operator, etc. For the curvature dependent part of F , we use 
central difference approximations instead of (10). For further details and higher 
order schemes, see [4]. 

1.5 Reinitialization 

After evolving φ under a general speed function F , it generally does not remain 
a signed distance function. We can reinitialize φ by finding (a new) φ with the 
same zero level set but with |∇φ| = 1. Sussman et al [5] proposed integrating 
the reinitialization equation 

φt + sign(φ)(|∇φ| − 1) = 0 (13) 

for a short period of time. This equation can be discretized in a similar way as 
the level set equation, and the discontinuous sign function is smoothed over a 
few grid cells. 

Another option is to explicitly update the nodes close the boundary, by for 
example extracting the curve segments and computing the distances to the grid 
nodes. For the remaining nodes, we can use the efficient fast marching method 
(see below). 

1.6 The Boundary Value Formulation 

The level set equation (9) is an initial value problem, where we track the zero 
level set φ = 0 in time and ignore φ away from the interface. If the speed function 
F > 0, we can alternatively formulate the evolution by an arrival function T , 
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Figure 4: The boundary value formulation for interface evolution. T (x, y) gives 
the time for the interface to reach (x, y) from the initial location. 

with T (x) giving the time for the interface to reach x from its initial location 
Γ (Figure 4). From the fact that time * rate = distance we can derive the 
boundary value problem known as the Eikonal equation: 

|∇T |F = 1, T = 0 on Γ. (14) 

An important special case is F = 1, when (14) can be used to compute distance 
functions for the boundary Γ. 

1.7 The Fast Marching Methods 

We can discretize the Eikonal equation (14) using the same scheme as for the 
level set equation, to obtain the nonlinear algebraic system of equations 

 1/2 
max(Dijk 

−xT, 0)2 
ijk+ min(D+xT, 0)2 

 +max(D−y T, 0)2 + min(D+y T, 0)2 
 =

1 
. (15) ijk ijk

+max(D−z T, 0)2 + min(D+z T, 0)2 Fijk 
ijk ijk

Another possibility is the scheme 

 1/2 
max(D−xT,−D+xT, 0)2 

ijk ijk
 +max(D−y T,−D+y T, 0)2 

 = 
1 

(16) ijk ijk

+max(D−z T,−D+z T, 0)2 Fijk 
ijk ijk

which is slightly simpler because we choose either the forward or the backward 
difference along each dimensions (never both). 

For efficient solution of (16), we observe that front propagates outward from 
Γ and that nodes with higher value of T will never affect nodes with smaller 
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values. This is the idea behind the Fast Marching Method (Sethian [3], see 
also Tsitsiklis [6]). The given boundary values are considered “known values”, 
and the nodes neighboring these can be updated by (16) and inserted into a 
priority queue. The node with smallest unknown value can then by removed 
and marked as “known”, since it will not be affected by the other unknown 
values. Its neighbors are then updated by (16) and inserted into the queue. 
This is repeated until all node values are “known”, and with a priority queue 
based on heaps the total computation requires O(n log n) operations for n nodes. 
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