| 1 |
Absolute values and discrete valuations (PDF)
|
| 2 |
Localization and Dedekind domains (PDF)
|
| 3 |
Properties of Dedekind domains, ideal class groups, factorization of ideals (PDF)
|
| 4 |
Étale algebras, norm and trace (PDF)
|
| 5
|
Dedekind extensions (PDF)
|
| 6 |
Ideal norms and the Dedekind-Kummer theorem (PDF)
|
| 7 |
Galois extensions, Frobenius elements, and the Artin map (PDF)
|
| 8 |
Complete fields and valuation rings (PDF)
|
| 9 |
Local fields and Hensel's lemmas (PDF)
|
| 10 |
Extensions of complete DVRs (PDF)
|
| 11 |
Totally ramified extensions and Krasner's lemma (PDF)
|
| 12 |
The different and the discriminant (PDF)
|
| 13 |
Global fields and the product formula (PDF)
|
| 14 |
The geometry of numbers (PDF)
|
| 15 |
Dirichlet's unit theorem (PDF)
|
| 16 |
Riemann's zeta function and the prime number theorem (PDF)
|
| 17 |
The functional equation (PDF)
|
| 18 |
Dirichlet L-functions and primes in arithmetic progressions (PDF)
|
| 19 | The analytic class number formula (PDF) |
| 20 |
The Kronecker-Weber theorem (PDF)
|
| 21 |
Class field theory: ray class groups and ray class fields (PDF)
|
| 22 |
The main theorems of global class field theory (PDF)
|
| 23 |
Tate cohomology (PDF)
|
| 24 |
Artin reciprocity in the unramified case (PDF)
|
| 25 |
The ring of adeles, strong approximation (PDF)
|
| 26 |
The idele group, profinite groups, infinite Galois theory (PDF)
|
| 27 |
Local class field theory (PDF)
|
| 28 |
Global class field theory and the Chebotarev density theorem (PDF)
|