Topic 16

Use of Elastic
Constitutive
Relations in
Updated
Lagrangian
Formulation

Contents:

B Use of updated Lagrangian (U.L.) formulation

Bl Detailed comparison of expressions used in total
Lagrangian (T.L.) and U.L. formulations; strains,
stresses, and constitutive relations

B Study of conditions to obtain in a general incremental
analysis the same results as in the T.L. formulation, and
vice versa

B The special case of elasticity

B The Almansi strain tensor

Bl One-dimensional example involving large strains

B Analysis of large displacement/small strain problems

B Example analysis: Large displacement solution of frame
using updated and total Lagrangian formulations

Textbook:

Example:

6.4, 6.4.1
6.19




Topic Sixteen 16-3

SO FAR THE USE OF
THE T.L. FORMULATION
WAS IMPLIED

Now suppose that we wish to use the
U.L. formulation in the analysis. We
ask

« Is it possible to obtain, using the U.L.
formulation, identically the same
numerical results (for each iteration)
as are obtained using the T.L.
formulation?

\_
-

In other words, the situation is

Program 1

* Only T.L. formulation
is implemented

— Constitutive relations are

P
6Sj = function of displacements

doSi} = OCij,rs do€s

Information obtained from physical |

laboratory experiments. a

Program 1 results

NG
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Program 2

* Only U.L. formulation
is implemented

- Constitutive relations are
t'Ti}= = @
dtsi}= e @

Question:

How can we obtain
with program 2
identically the same
results as are
obtained from
program 17?

N\ (

To answer, we consider the linearized

equations of metion:

LV OCijrs 0€rs Soei}°dv +J°V (;Sij. Sonifdv

T.L.

= t+algp —ﬁv &Si}soeifdv

ﬁ v tCi}rs €rs Ste-.}‘dv + ffvtT"}Sm‘}th

U.L.

= rilg — L Ty de'dV

AN
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Terms used in the formulations:

T.L. U.L. Transparency
formulation|formulation| Transformation 16-5

t
f o4y f 4V | %dV = £ tdv
ov ty P

t t
OelJ, O”rllt tel}’ t'rlu' 0 % (:: r’IOt S,}t rs
oMNij = 0Xr,i 0Xsj tMrs

S0€i, = oXr.i OXsj Ot€
00€ij, OoMij | Ot€j, O ¢ Rt S

Oomj = oXr,i c;Xs,} OtMrs

N

N

Derivation of these kinematic
relationships: Transparency

16-6
A fundamental property of o€, is that

de, d d%% = 5 ((ds)® — (°ds)?)
Similarly,

taley dx d%% = 5 ((Fds)® — (°ds)?)
and

s A% dxs =  ((*'ds)” — (ds)?)
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time t y
S
X3 \\ th3
d'xz Vgt
. odS de 2 X
time 0 __sT—— 2 L te a0
Wz dx =X d"'x
X2

X1

Fiber d° of length °ds moves to
become d'x of length 'ds.

N

Hence, by subtraction, we obtain
o€ A% d°%, = 1Ers d'X: d'Xs
Using d'x = ¢X d°, we obtain
085} doXi dOX} = {Ers (;Xr,i (;Xs,} dOXi dOX}
Since this relationship holds for
arbitrary material fibers, we have

t,
o€ij = oXr,i 0Xs,jtErs

AN
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Now we see that
Oeu, + o'Y],* = (}Xr,i (sth’}ters + (;Xl',i OtXS,j, t'rlrs
Since the factors ¢x:i oXs; do not

contain the incremental displacements
ui, we have

o€ = 0Xr,i 3Xs,}ters < linear in u;
t, 1 o
oMij = oXr,i 0Xs,jtNrs < quadratic in u;

\—

\

In addition, we have

8Oei} = (;Xr,i 6Xs,} Bters

Soni} = (;Xr,i oth,} Smrs
These follow because the variation is
taken on the confiquration t+At and

hence the factors ox:, 3xs,} are taken as
constant during the variation.

J
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We also have

T.L. U.L. .
. . Transformation
formulation|formulation
%
0Sj Ty 0Sy = 0y Xim Tmn X0
%
0 0 0 0
OCi}rs tCi}rs oCi}rs = $ tXiat X},b tCabpq t Xrpt Xs,q
(To be derived below)

~

Consider the tangent constitutive
tensors oCips and (Gips:

Recall that
dOSi} = OCi}rs doers
. Ndifferential
_GSy %increments

Now we note that
0

doSj = Tg tXi,a tX;b ASab

t t
do€rs = 0oXp,r 0Xq,s dtgpq

AN
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Hence

0
('tap to Xi,a ?xj,b dtsab) =OC§rs ((;Xp,r (;Xq,s dtqu)

—

dOYSq d;srs
Solving for diSa, gives

t
diSap = (D% (;Xa,i (;xb,} OCijrs (§Xp,r (;xq,s> Gt€pq

Vv

tCabpq

\

And we therefore observe that the
tangent material relationship to be used
is
'p
tCabpq = UB (;xa,i 6xb,; O.Cijrs (;Xp,r (;xq,s

_J
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Now compare each of the integrals appearing in
the T.L. and U.L. equations of motion:

1) J; v (;Si}. Soei; %dv = J‘VlTi} Bte-g,‘dv ?
L 1

True, as we verify by substituting the
established transformations:

0
J;V (% toxi,m t'Tmn ?x},n ) ((;Xr,i (;Xs,} oiers) °dv

é?i} ﬁoei", .
= J; vtTmn Oters (({Xi,m éxr,i) (qx}.n (;xs,j.)% °dv
Bon S
=ﬁVtTmn Stemn th

N (

2) f Sy 8omy °dV = L’Ti}ﬁmi}tdv ?
L 1

True, as we verify by substituting the
established transformations:

0
J;v (t_pE toxi,m t'Tmn ?X},n) ((;Xr,i (;Xs,j, St’f]rs) odv

Jéij, &;Tlij'
°p
= L VtTmn OMrs (? Xi,m (}Xr,i)(?x},n (;xs,j) $ °dv

Smr Sns v

=J:VtTmn Stnmn th

_J
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3) ,LV OCi}rs 0€rs SOei} odv = J:V t_Cijrs tCrs Bteu. tdv r)

i J

True, as we verify by substituting the
established transformations:

(o]
0 0 0 0
L (t—pg t Xiat Xj.,b tCabpq t Xr,p t Xs,q) X

N

OCi}rs

(0Xk.r 0Xe.s t€ke) (0Xm, (;Xn,j. Bt€mn) “dV

. J . ]
Y Y

0€rs Soeij.

=J:V tCabpq t€pq Ot€ab th

\-
s

Provided the established
transformations are used, the three
integrals are identical. Therefore the
resulting finite element discretizations
will also be identical.

(KL + ¢Knu) AU = ""2R — (F

GKL + KNL) AU = t+AtB - }E

oKL =KL The same holds for

each equilibrium iteration.
oKL = KL eq °

o=

J L
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Hence, to summarize once more,
program 2 gives the same results as
program 1, provided

® — The Cauchy stresses are
calculated from
t
tTij, = b% (;Xi,m (;Smn (;X},n

® — The tangent stress-strain law is
calculated from
t

— t t t. t
tCijrs - D% oXi,a Oxj,b OCabpq Oxr,p Oxs,q

~

Conversely, assume that the material
relationships for program 2 are given,
hence, from laboratory experimental
information, ‘Ty and «Cys for the U.L.
formulation are given.

Then we can show that, provided the
appropria(t)e transformations

(;Sl} = % ?xi,m tfrmn ?X},n
0

— 0 0 0 0
OCij.rs - % tXi,a txj,b tCabpq tXrp tXs,q

are used in program 1 with the T.L.
formulation, again the same numerical
results are generated.

AN
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(

Hence the choice of formulation (T.L.

vs. U.L.) is based solely on the
numerical effectiveness of the methods:

* The B matrix (U.L. formulation)
contains less entries than the ¢B.

matrix (T.L. formulation).

« The matrix product B"CB is less
expensive using the U.L. formulation.

\

+ |f the stress-strain law is available in
terms of ¢S, then the T.L. formulation
will be in general most effective.

— Mooney-Rivlin material law

— Inelastic analysis allowing for large
displacements / large rotations, but

small strains
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THE SPECIAL CASE
OF ELASTICITY

Consider that the components oCy.s are
given:

tS _ t t

09j = 0ULsijrs 0€rs
From the above discussion, to obtain

the same numerical results with the

U.L. formulation, we would employ
t

tTu} = D%(;Xi,m ((;Cmnrs C;Srs) éx}.n

t

P, t t t
tCI}I’S =0 OXi,a OXJ,b OCabpq Oxr,p oxs’q

©

N\ [

We see that in the above equation, the
Cauchy stresses are related to the
Green-Lagrange strains by a
transformation acting only on the m
and n components of {Cmnrs.

However, we can write the total stress-
strain law using a tensor, {Cjs, by
introducing another strain measure,
namely the Almansi strain tensor,

Ty = {C;}s tE€7s_sAlmansi strain tensor
p
t t t t R t
tCi?rs = OB oXi,a OX},b oCabpq 0Xr,p 0Xs,q

Y
~
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Definitions of the Almansi strain tensor:

t 0 0 t
teﬁnn = tXi,m tX},n Oeij,

at
te2 = 1 (1- X" %) T
1 ——

N\

« A symmetric strain tensor, i€} = i€}

« The components of i{€? are not
invariant under a rigid body rotation
of the material.

« Hence, {€® is not a very useful strain
measure, but we wanted to introduce
it here briefly.

L
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Example: Uniaxial strain
Transparency
16-27 , th 1 /A2
—» 011 = o + 2 \o,
| :ea_‘A_l(‘A)z
|—t A AT
strain
Green-Lagrange
1.0 ﬂ— Engineering
Almansi
+ = A
-1.0 1.0 o
-1.01
Transparency
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It turns out that the use of IC%.s with
the Almansi strain tensor is effective
when the U.L. formulation is used with
a linear isotropic material law for large
displacement / large rotation but

small strain analysis.

_/
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* In this case, iCjs may be taken as

:Cﬁrs XS.* Srs + I.L(air 8}3 + Sis S‘r)

= tCij,s constants

Practically the same response is
calculated using the T.L. formulation
with

(§Cijrs =\ Si} Srs + P«(Bir 8}5 + Bis Sjr)

= oCjs  constants

~

\—

N[

LINEAR
40 |- SOLUTION .
TL 8UL SOLUTIONS
sob MALLETET AL
LOAD P [ib]
E =10 x 108 Ib.fin.2
v=02
20} l"
two
o ¢
TWELVE 8NODE ELEMENTS
FOR HALF OF ARCH
o 1 1 1 1
00 []] 0.2 03 04

VERTICAL DISPLACEMENT AT APEX W, [in]

Load-deflection curve for a shallow
arch under concentrated load

_/
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Transparency The reason that practically the same

16-30 response is calculated is that the
required transformations to obtain
exactly the same response reduce to
mere rotations:

Namely, in the transformations from
tCis 10 0Cabpq, and in the relation
between oCiys and Cygs,

0
%ﬁ 1, [ =& =dRddU

= {R
Transparency However, when using constant material
16-31 moduli (E, v) for large strain analysis,
with
tTij. = } ars }efs
~s
and T = A3 8rs + o (Bir §js + Bis )

(gsij- = tCij.rs (;Srs

totally different results are obtained.

J L
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Consider the 1-D problem already
solved earlier:

Material constants E, v A

m
It

E(1-v)

r OL
Before, we used §S11 = E ¢€11.
Now, we consider 'Ty; = E ie%,.

1+v)(1 —2v)

\

Here, we have

obtain the force-displacement
relationship.

1 1
€31 =11 — 5 (ui1)? = > [1 — (
L-°L
L
t
P
t
T = —
1=K

Using L= OL + tA, t'T11 = E {8?1, we

J
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P

oL

\—

\

Example: Corner under tip load

L=10.0 m}g__1_
h=02m JL 50
b=10m

E = 207000 MPa
v=03
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Finite element mesh: 51 two-dimensional
8-node elements

25 elements |
| IR
.3
All elements are
plane strain
not drawn elements.
to scale
25
elements

~

Consider a nonlinear elastic analysis.
For what loads will the T.L. and U.L.
formulations give similar results?

VAN

Transparency
16-36

Transparency
16-37



16-22 Elastic Constitutive Relations in U.L.F.

-

Trmfeg;;emy — For large displacement/large _
rotation, but small strain condi-

tions, the T.L. and U.L. formula-

tions will give similar resulits.

— For large displacement/large
rotation and large strain condi-
tions, the T.L. and U.L. formula-
tions will give different results,
because different constitutive
relations are assumed.

(’

\

Results: Force-deflection curve
e Over the range of loads shown, the T.L.
Tmnlsé’_ ;;ency and U.L. formulations give practically
identical results
o The force-deflection curve obtained with
two 4-node isoparametric beam
elements is also shown.

61 2-D elements
- ’ Beam elements,
T.L and UL T.L. formulation
4] formulations -
Force \'\
(MN) 5 L
0 — —+ }
0 5 10 15

Vertical displacement of tip (m)

J
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~

Deformed configuration for a load of 5 MN
(2-D elements are used):

Undeformed |R

Deformed, load=1 MN

Deformed, load=5 MN

Transparency
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Numerically, for a load of 5 MN, we have,
using the 2-D elements,

T.L. formulation|U.L. formulation
15.289 m 15.282 m

vertical tip
displacement

The displacements and rotations are large.
However, the strains are small — they can
be estimated using strength of materials

formulas:
Ebase = % where M = (5 MN)(7.5 m)

= 3%

J
~
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