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Topic 19

Beam, Plate, and
Shell Elements­
Part I

• Brief review of major formulation approaches

• The degeneration of a three-dimensional continuum to
beam and shell behavior

• Basic kinematic and static assumptions used

• Formulation of isoparametric (degenerate) general shell
elements of variable thickness for large displacements
and rotations

• Geometry and displacement interpolations

• The nodal director vectors

• Use of five or six nodal point degrees of freedom,
theoretical considerations and practical use

• The stress-strain law in shell analysis, transformations
used at shell element integration points

• Shell transition elements, modeling of transition zones
between solids and shells, shell intersections

Sections 6.3.4, 6.3.5

The (degenerate) isoparametric shell and beam elements, including the
transition elements, are presented and evaluated in

Bathe, K. J., and S. Bolourchi, "A Geometric and Material Nonlinear
Plate and Shell Element," Computers & Structures, 11, 23-48, 1980.

Bathe, K. J., and L. W. Ho, "Some Results in the Analysis of Thin Shell
Structures," in Nonlinear Finite Element Analysis in Structural
Mechanics, (Wunderlich, W., et al., eds.), Springer-Verlag, 1981.

Bathe, K. J., E. Dvorkin, and L. W. Ho, "Our Discrete Kirchhoff and Iso­
parametric Shell Elements for Nonlinear Analysis-An Assessment,"
Computers & Structures, 16, 89-98, 1983.
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References:
(continued)

The triangular flat plate/shell element is presented and also studied in

Bathe, K. J., and L. W. Ho, "A Simple and Effective Element for Anal­
ysis of General Shell Structures," Computers & Structures, 13, 673­
681, 1981.



STRUCTURAL ELEMENTS

• Beams

• Plates

• Shells

We note that in geometrically nonlinear
analysis, a plate (initially "flat shell")
develops shell action, and is analyzed
as a shell.

Various solution approaches have been proposed:

• Use of general beam and shell
theories that include the desired
nonlinearities.

- With the governing differential
equations known, variational
formulations can be derived and
discretized using finite element
procedures.

- Elegant approach, but difficulties
arise in finite element formulations:
• Lack of generality
• Large number of nodal degrees

of freedom

Topic Nineteen 19-3

Transparency
19-1

Transparency
19-2



19-4 Beam, Plate and Shell Elements - Part I

Transparency
19-3

• Use of simple elements, but a large
number of elements can model
complex beam and shell structures.

- An example is the use of 3-node
triangular flat plate/membrane
elements to model complex shells.

- Coupling between membrane and
bending action is only introduced
at the element nodes.

- Membrane action is not very well
modeled.

bendingf membrane
artificial

.ISs stiffness

I

\
~3 / degree of freedom with
\/_~ artificial stiffness
~'/..z

L5}~--
xl

X1

Stiffness matrix in
local coordinate
system (Xi).

Example:
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• Isoparametric (degenerate) beam and
shell elements.

- These are derived from the 3-D
continuum mechanics equations
that we discussed earlier, but the
basic assumptions of beam and
shell behavior are imposed.

- The resulting elements can be
used to model quite general beam
and shell structures.

We will discuss this approach in some
detail.

Basic approach:

• Use the total and updated Lagrangian
formulations developed earlier.
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We recall, for the T.L. formulation,

f HAtS.. ~HAtE .. 0dV _ HAt(jJ}Jov 0 II'U 0 II' - ;:IL

Linearization ~

£'v OCiirs oers 80ei~ °dV +f,v JSi~8o"ly. °dV

= HAtm - f,v JSi~8oey.°dV

Also, for the U.L. formulation,

JVHA~Sij.8HA~Eij. tdV = HAtm

Linearization ~

Jv tCifs ters 8tei} tdV +Jv~i~8t'T\ij. tdV

= H At9R - f",t'Tij. 8tei}tdV



• Impose on these equations the basic
assumptions of beam and shell -­
action:

1) Material particles originally on a
straight line normal to the mid­
surface of the beam (or shell)
remain on that straight line
throughout the response history.

For beams, "plane sections initially
normal to the mid-surface remain
plane sections during the response
history".

The effect of transverse shear
deformations is included, and
hence the lines initially normal to
the mid-surface do not remain
normal to the mid-surface during
the deformations.
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not 90° in general

time t
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2) The stress in the direction "normal"
to the beam (or shell) mid-surface is
zero throughout the response history.

Note that here the stress along the
material fiber that is initially normal
to the mid-surface is considered;
because of shear deformations, this
material fiber does not remain
exactly normal to the mid-surface.

3) The thickness of the beam (or shell)
remains constant (we assume small
strain conditions but allow for large
displacements and rotations).
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FORMULATION OF
ISOPARAMETRIC

(DEGENERATE) SHELL
ELEMENTS

• To incorporate the geometric
assumptions of "straight lines normal to
the mid-surface remain straight", and of
"the shell thickness remains constant"
we use the appropriate geometric and
displacement interpolations.

• To incorporate the condition of "zero
stress normal to the mid-surface" we
use the appropriate stress-strain law.
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r
X2

tv~ = director vector at node k

ak = shell thickness at node k
(measured into direction of tv~)

Shell element geometry
Exam~: 9-node element
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Element geometry definition:

• Input mid-surface nodal point
coordinates.

• Input all nodal director vectors at time O.
• Input thicknesses at nodes.
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r---
X2

- material particle
(OXi)

• Isoparametric coordinate system
(r, s, t):

- The coordinates rand s are
measured in the mid-surface
defined by the nodal point
coordinates (as for a curved
membrane element).

- The coordinate t is measured in
the direction of the director vector
at every point in the shell.

s
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Interpolation of geometry at time 0:
Transparency
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k~' hk °Xr ,+ ~ k~' a~ hk °V~i
mid-surface effect of shell

only thickness
material
particle
with isoparametric
coordinates (r, s, t)

hk = 2-D interpolation functions (as
for 2-D plane stress, plane
strain and axisymmetric elements)

°X~ = nodal point coordinates
°V~i = components of °V~

Similarly, at time t, 0t-coordinate

t ~ h t k <D ~ h tvk
Xi = L.J k Xi + 2 L.J ak k ni
~ k=1 vvv k=1 \N\IV

~ I I
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The nodal point coordinates and director
vectors have changed.

X3 0vk
_n

}-----+-------/-'--- X2
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To obtain the displacements of any
material particle,

t t 0Ui = Xi - Xi

Hence
N N

tUi = k~1 hk tu~ + ~ k~1 ak hk CV~i - °V~i)

where
tu~ - tx~ - °x~

I - I I (disp. of nodal point k)
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tV~i - °V~i = change in direction cosines
of director vector at node k

The incremental displacements from
time t to time t+at are, similarly, for
any material particle in the shell
element,

U. - t+LltX· - tx·
1- 1 I

where
u~ = incremental nodal point displacements

V~i = t+LltV~i - tV~i = incremental change
in direction cosines
of director vector
from time t to time
t +Llt



e3
J---X2

To develop the strain-displacement
transformation matrices for the T.L. and
U.L. formulations, we need

- the coordinate interpolations for the
material particles (OXil tXj).

- the interpolation of incremental
displacements from the incremental
nodal point displacements and
rotations.

Hence, express the V~i in terms of
nodal point rotations.

We define at each nodal point k the
vectors OV~ and °v~:- - °v~

r~~
°v~

°vk
0\ Ik e2 x n 0Vk2 = 0Vk

n
X 0Vk1

y 1= IIe2 x °V~1I2 ,- - -

The vectors °v~, °V~ and °V~ are
therefore mutually perpendicular.

Topic Nineteen 19-13

Transparency
19-21

Transparency
19-22



19-14 Beam, Plate and Shell Elements - Part I

Transparency
19-23

Transparency
19-24

Then let <Xk and ~k be the rotations
about tv~ and tv~. We have, for small
<Xk, ~k,

v~ = - tv~ <Xk + tv~ ~k

>---+--__ t~

t+dtVk
_n with elk =0

Hence, the incremental displacements
of any material point in the shell
element are given in terms of
incremental nodal point displacements
and rotations

N N

Ui = L hk u~ + 2
t L ak hk [-tV~i <Xk + tV~i ~k]

k=1 k=1



Once the incremental nodal point
displacements and rotations have been
calculated from the solution of the finite
element system equilibrium equations,
we calculate the new director vectors
using

t+.:ltv~ = tv~ +1 (_TV~ dak +TV~ d~k)

L
ak,~k

and normalize length

Nodal point degrees of freedom:

• We have only five degrees of
freedom per node:
- three translations in the Cartesian

coordinate directions
- two rotations referred to the local

nodal point vectors tv~, tv~

• The nodal point vectors tv~, tv~

change directions in a geometrically
nonlinear solution.
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~3

- Node k is shared
by four shell elements
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no physical
stiffness

- Node k is shared
by four shell elements

- One director vector
l~~ at node k

- No physical stiffness
corresponding to
rotation about l~~.



~1

~3

- Node k is shared
by four shell elements

- One director vector
t~~ at node k

- No physical stiffness
corresponding to
rotation about t~~.
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• If only shell elements connect to
node k, and the node is not
subjected to boundary prescribed
rotations, we only assign five
local degrees of freedom to that
node.

• We transform the two nodal rotations
to the three Cartesian axes in order
to
- connect a beam element (three

rotational degrees of freedom) or
- impose a boundary rotation (other

than ak or r3k) at that node.
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• The above interpolations of °Xi, tXi , Ui

are employed to establish the strain­
displacement transformation matrices
corresponding to the Cartesian strain
components, as in the analysis of 3-D
solids.
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• Using the expression oe.. derived earlier
the exact linear strain-di~placement
matrix JBl is obtained.

However, using ~ OUk,i OUk,} to develop the
nonlinear strain-displacement matrix
JBNl, only an approximation to the exact
second-order strain-displacement rotation
expression is obtained because the inter­
nal element displacements depend non­
linearly on the nodal point rotations.

The same conclusion holds for the U.L.
formulation.



• We still need to impose the condition
that the stress in the direction
"normal" to the shell mid-surface is
zero.

We use the direction of the director
vector as the "normal direction."

~s ~s

_ es x et
er = lies x etl12 ' es = et x er

We note: er, es, et are not mutually
perpendicular in general.

er , es , et are constructed to
be mutually perpendicular.
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Then the stress-strain law used is, for
a linear elastic material,

1 v 0
1 0

o

symmetric

000
000
000

1-v 0 0
-2- k C2v) 0

k C2v)
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k = shear correction factor

where
row 1 (e,)2 (m,)2 (n,)2 elm, m,n, n,e,------------------ --------- ---- ------------ -- ------ -- -----------

QSh = :

using

f 1 = cos (~1, gr) rn1 = cos (~, gr) n1 = cos (~a, gr)
f 2 = cos (~1, gs) rn2 = cos (~, gs) n2 = cos (~a, ~)

fa = cos (~1, ~t) rna = cos (~, ~t) na = cos (~a, ~t)



• The columns and rows 1 to 3 in CSh

reflect that the stress "normal" to the
shell mid-surface is zero.

• The stress-strain matrix for plasticity
and creep solutions is similarly
obtained by calculating the stress­
strain matrix as in the analysis of 3-D
solids, and then imposing the
condition that the stress "normal" to
the mid-surface is zero.

• Regarding the kinematic description of
the shell element, transition elements
can also be developed.

• Transition elements are elements with
some mid-surface nodes (and
associated director vectors and five
degrees of freedom per node) and
some top and bottom surface nodes
(with three translational degrees of
freedom per node). These elements
are used

- to model shell-to-solid transitions
- to model shell intersections
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a) Shell intersection
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•

b) Solid-shell intersection

• •
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